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Practical Machine Learning

Dr. Suyong Eum

Workshop 2
Principal Components Analysis (PCA) 

& Support Vector Machine (SVM)
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2Option 1: soft margin SVM

Principal Component Analysis (PCA)
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In Wikipedia:

A statistical procedure that uses an orthogonal transformation 
to convert a set of observations of possibly correlated variables 
into a set of values of linearly uncorrelated variables called 
principal components.

Principal Component Analysis (PCA): definition
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PC1

 How to select a principal component?
- One that captures the largest variance of 

the data points.
Why?

- Because we want to clearly see how each 
data point is related (close) each other.

- Then, which one (PC1 or PC2) is better?

PC2

Principal Component Analysis (PCA): intuition
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How to find the principal components showing the largest variance?
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How to find the principal components showing the largest variance?
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How to find the principal components showing the largest variance?
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How to find the principal components showing the largest variance?
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How to find the principal components showing the largest variance?
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How to find the principal components showing the largest variance?
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How to find the principal components showing the largest variance?
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How to find the principal components showing the largest variance?
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How to find the principal components showing the largest variance?

1) Find the covariance matrix of data points.
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How to find the principal components showing the largest variance?

1) Find the covariance matrix of data points.
2) Obtain the eigen values and vectors of the 

covariance matrix: eigen decomposition.
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How to find the principal components showing the largest variance?

1) Find the covariance matrix of data points.
2) Obtain the eigen values and vectors of the 

covariance matrix: eigen decomposition.
3) Sort the eigen vectors in descending order in 

terms of their corresponding eigen values.
- an eigen vector with the largest eigen value 

becomes the first principal component.

1st principal 
component

2nd principal 
component

1st principal 
component

2nd principal 
component
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How to find the principal components showing the largest variance?

 Actually, there is a more convenient way of doing it.
 It is called “Singular Value Decomposition” or SVD.

TT VVXX Λ=
Eigen Value decomposition
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How to find the principal components showing the largest variance?

TT VVXX Λ=
Eigen Value decomposition

TVUX Σ=
Singular Value Decomposition (SVD)

?

 Actually, there is a more convenient way of doing it.
 It is called “Singular Value Decomposition” or SVD.
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How to find the principal components showing the largest variance?

TT VVXX Λ=
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TVUX Σ=
Singular Value Decomposition (SVD)Eigen Value decomposition

 Actually, there is a more convenient way of doing it.
 It is called “Singular Value Decomposition” or SVD.
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How to find the principal components showing the largest variance?
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How to find the principal components showing the largest variance?

TT VVXX Λ=

)VU()VU(XX TTTT ΣΣ=

T2VVΣ=

Eigen decomposition

TVUX Σ=
Singular Value Decomposition (SVD)
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 Actually, there is a more convenient way of doing it.
 It is called “Singular Value Decomposition” or SVD.
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How to find the principal components showing the largest variance?

TT VVXX Λ= TVUX Σ=
Singular Value Decomposition (SVD)Eigen decomposition

204721.4 2 =

2Σ=Λ

 Actually, there is a more convenient way of doing it.
 It is called “Singular Value Decomposition” or SVD.
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Now we know how to find the principal components 
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Dimension reduction
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2 dimension data points can be represented 
into one dimension space (v1)

Dimension reduction
1st Principal 
Component
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How to use PCA for machine learning?

8

8
1
2

n

…

m=64

A digit number with 64 dimension can be shown in 2 dimension space (v1 and v2).

VXXrot ⋅=
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Demo





 Each digit number has 8 by 8 = 64 dimensions.
 After SVD, the first two principal components are selected, and the data 

points with 64 dimension are plotted in two dimension. 

1st Principal 
Component

2nd Principal 
Component
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35Option 1: soft margin SVM

Support Vector Machine (SVM)
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36Which one is better for classification?
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Decision 
boundary

Margin

Support 
Vectors

2x

1x

Support 
lines

37Terminology used in this lecture
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2x

1x
w

cx

|||| rbx

||w||
w||||xx rbc +=

38Margin distance
)x(01122 ywxwxw =++
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2x

1x
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 Finding a decision boundary which maximizes 
the margin.
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46Problem formulation
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 Let’s make it a quadratic programming problem.
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47How about non-linearly separable case?
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Option 2 Kernel trick

2||w||
2
1min

nwtts nn ∀≥+ ,1)x(w.. 0
T

0

0

x3

x

48How about non-linearly separable case?
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Soft margin SVM

49Option 1: soft margin SVM
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 Remember the constraint below?
nwt nn ∀≥+ ,1)x(w 0

T

: slack

 For the data points which are non-separable, we relax
the constraint:

nwt nnn ∀−≥+ ,1)x(w 0
T ε 0≥nε

 It says that the distance between a data point and the 
decision boundary is allowed to be less than 1.

 is called slack variables.
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 So we have the constraint below. How about the 
objective function?

: slack  We want to minimize the slack. 

nwxt nnn ∀−≥+ ,1)(w 0
T ε 0≥nε

2||w||
2
1min ∑+

n nC ε

 If “C” is small, the dominant factor is                 
1) Prefer large margin
2) May cause large # of misclassified data points. 

2/|||| 2w
“C” is small “C” is large

57Option 1: soft margin SVM
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1xw 0
T =+ w

0xw 0
T =+ w

ε

 So we have the constraint below. How about the 
objective function?

: slack  We want to minimize the slack. 

nwxt nnn ∀−≥+ ,1)(w 0
T ε 0≥nε

2||w||
2
1min ∑+

n nC ε

 If “C” is small, the slack contributes more                 
1) Prefer large margin
2) May cause large # of misclassified data points. 

 If “C” is large, the slack contributes less
1) Prefer less # of misclassified data points.
2) May cause small margin.

“C” is small “C” is large

58Option 1: soft margin SVM
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Kernel trick

60Option 1: soft margin SVM
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61Kernel trick
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Primal problem Dual problem

 They are the same problem.
 λ: Lagrange multipliers which corresponding 

to data points.
 t: label (-1 or 1)
 It looks complicated why we border to use 

dual problem???
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 If data xn are not linearly separable, what should we do?

Kernel trick
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64

 The idea of Kernel trick begins from here: to find the scalar values (the inner product of two vectors: 
zn and zm ) and so we can formulate the quadratic problem which can be linearly separable.

Kernel trick
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65

 Kernel function K() is a function which returns the scalar values (the inner product of two vectors: 
zn and zm in Z space) when the data points (xn and xm in X space) are given.

Kernel trick
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66Finally

 With the Kernel function defined previously, we want to change the quadratic problem as follows:
- Because the Kernel function is a function of data points (xn and xm ) which we already have.

Z space problem X space problem

Z space problem can be formulated with data in X space
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72Gaussian Kernel: derivation (inner product in the infinite z space)
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73Gaussian Kernel: derivation (inner product in the infinite z space)
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Mapping to infinite-dimension !
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1=α 10=α

100=α 1000=α

http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex8/ex8.html

78Gaussian Kernel
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79Option 1: soft margin SVM

Hand-on Experience
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80Colab: Google Colaboratory

 A web base free google cloud service 
 Jupyter Notebook with Google Drive

 You can even use GPU for free!
 Good but it provides the best effort service

- You must save your things in your google drive or somewhere 
else.

 Resource check
 !cat /proc/meminfo
 !cat /proc/cpuinfo
 !df -h
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81Colab: Principal Component Analysis (PCA)

1) Go to the Colab
 https://colab.research.google.com

2) Select “GITHUB” and copy the link below into
 https://github.com/suyongeum/PMLWS2018_WS2.git

3) Select the notebook in the list
 OCT_23_2018_PCA.ipynb

4) Go to “Runtime” – “Change runtime type”
 Python 3
 GPU

5) Save it into your gdrive
 “File” - “Save a copy in Drive …”

GITHUB

https://colab.research.google.com/
https://github.com/suyongeum/PMLWS2018_WS2.git
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Data loading: MNIST

 MNIST data set
- http://yann.lecun.com/exdb/mnist/
- Training data

- One single file (45M) which includes 60,000 hand digit images for training,
- One single file (59K) which includes corresponding labels.

- Testing data
- One single file (7.5M) which includes 10,000 hand digit images for testing,
- One single file (9.8K) which includes corresponding labels.

https://tiny-imagenet.herokuapp.com/
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Making your gdrive as a working directory

 Defining a root directory where you mount your gdrive

 /gdrive/My Drive/Colab Notebooks/

 Running time measurement

from google.colab import drive
drive.mount(‘/gdrive/’)

import datetime
before = datetime.datetime.now().timestamp()

…

after = datetime.datetime.now().timestamp()
print( “Time taken:”, after – before)
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84Colab: Support Vector Machine (SVM)

1) Go to the Colab
 https://colab.research.google.com

2) Select “GITHUB” and copy the link below into
 https://github.com/suyongeum/PMLWS2018_WS2.git

3) Select the notebook in the list
 OCT_23_2018_SVM.ipynb

4) Go to “Runtime” – “Change runtime type”
 Python 3
 GPU

5) Save it into your gdrive
 “File” - “Save a copy in Drive …”

GITHUB

https://colab.research.google.com/
https://github.com/suyongeum/PMLWS2018_WS2.git
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85Colab: Feature extraction

1) Go to the Colab
 https://colab.research.google.com

2) Select “GITHUB” and copy the link below into
 https://github.com/suyongeum/PMLWS2018_WS2.git

3) Select the notebook in the list
 OCT_23_2018_Feature_extraction.ipynb

4) Go to “Runtime” – “Change runtime type”
 Python 3
 GPU

5) Save it into your gdrive
 “File” - “Save a copy in Drive …”

GITHUB

https://colab.research.google.com/
https://github.com/suyongeum/PMLWS2018_WS2.git
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Backup Slides
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87Finally finally…
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 Now you have a function, which classifies 
a data point in z space without mapping 
the data point to z space at all.

 Do you see why it is called a trick?
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