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You are going to learn

1 What Reinforcement Learning (RL) is
(d Deep Q Network (DQN)
d Policy Gradient (PG)
- Actor Critic (AC)
- Asynchronous Advantage Actor Critic (A3C)
(1 Hand-on experience
- CartPole game



Big picture: Reinforcement Learning (RL)

1 Learning how to take actions in an environment so as to maximize
future cumulative reward.
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Reinforcement Learning (RL) has been around for a long time

1 Reinforcement Learning (RL) has been used for many applications where an
agent interacts with an environment while trying to learn optimal sequence of

decisions — optimal control problems:

Manufacturing, e.g., robot arms to assemble cars.

Financial strategy, e.g., buy or sell to maximize the value of the portfolio

Inventory management or resource management
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Shed new light on RL with neural networks

Playing Atari with Deep Reinforcement Learning

Yolodymyr Mnih  Koray Kavukcuoglu = David Silver  Alex Graves
Daan Wierstra  Martin Riedmiller

DeepMind Technologies

Ioannis Antonoglou
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Abstract

We present the first deep learning model to successfully learn control policies di-
rectly from high-dimensional sensory input using reinforcement learning. The
maodel is a convolutional neural network, trained with a variant of Q-learning,
whose input is raw pixels and whose output is a value function estimating future
rewards. We apply our method to seven Atari 26000 games from the Arcade Learn-
ing Environment, with no adjustment of the architecture or learning algorithm. We
find that it outperforms all previous approaches on six of the games and surpasses
a human expert on three of them.
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Shed new light on RL with neural networks - cont .

model

model

How to model the environment?



Shed new light on RL with neural networks - cont .

How to model the environment?



How good is the reinforcement learning algorithm?

Video Pinball 7| 25385 Google DeepMind {02 AlphaGo
Boxing | 1707% ChaIIetr:gaseMMz-zh’tzt(:nl:>
Breakout | T or

Star Gunner |
Robotank | 508% I
Atlantis | #49% e
Crazy Climber | 1s% I
Gopher | doose I
Demon Attack | Z5ia e ———
Name This Game _| 2y —
Krull | [277% -
Assault | zacR——
Road Runner | BN —
Kangaroo | jzze I ————
James Bond | [i45% ——
Tennis | FESI=
Pong | [z
Space Invaders | EiE——
Beam Rider _| a5 —
Tutankham | [#12%
Kung-Fu Master | iiZam—=
Freeway |25
Time Pilot | {oosamms——
Enduro | s7s -
Fishing Derby _| Gssll—
Up and Down _| sz5all—
Ice Hockey |79% I~
Q-bert | [EE—
H.ERO. ]| “ At human-level or above
Asterix | Below human-level
Battle Zone | G4l —
Wizard of Wor | 67—
Chopper Command | [&5ll—
Centipede | EE——
Bank Heist | 57l ~
River Raid _| [sfll- 3 gl }
Zaxxon | 5wl 11 12 9
Amidar | S = y
Alien | 4258
Venture 188 - DeepMind Al Reduces
Seaquest |[ll25%
Double Dunk | ===
Bowling | [J14%
Ms. Pac-Man | [}-13%
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Frostbite_L% BI" by 40%
Gravitar | 5% m
Private Eye |}+2%
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* Human-level control through deep reinforcement learning, Feb. 26, 2015, Nature
* https://deepmind.com/applied/deepmind-for-google/



Terminology



State (S)

1) State (S)

2) Reward (R) = A reprejsentation of environment that an agent
- Discount factor () recoghizes. .
_ = A agent takes an action given state
3) Policy (m)

= E.g., pixel information as shown below

- Action (A)
4) Environment
- Transit Probability (P)

10



Reward (R) and Discount factor (vy)

1) State (S)
2) Reward (R)
- Discount factor (y)
3) Policy (m)
- Action (A)
4) Environment
- Transit Probability (P)

11

When an agent takes an action, it considers
two types of rewards

1. Immediate reward

2. Future accumulated reward
Reward in a different time step may need to
be treated differently: y[0,1]

time



Policy (1) and Action (A)

12

1) State (S)
2) Reward (R)
- Discount factor (y)
3) Policy (m)
- Action (A)
4) Environment
- Transit Probability (P)

= Agent has a set of actions given state

= _\.

Policies m is a distribution over actions given
states: probability of action a given state s
- Deterministic policy: a = (s)
- Stochastic policy: m(a|s)

rw(als)=P[A,=a|S, =9]



Environment

= Due to uncertainty of environment, an action
taken by an agent does not guarantee to a

1) State (S)

2) Reward (R) certain state.
- Discount factor () = The uncertainty is represented as transition
3) Policy (T[) probability.
) : a _ pa _ b _ _
Action (A PL=P[S., =SS =5, A, =4]

4) Environment
- Transit Probability (P)

z(als) P
L3

= \

13



Reinforcement Learning (RL) process

[Environment]

14



Reinforcement Learning (RL) process
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Reinforcement Learning (RL) process

T
at
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How to find the optimum policy?: two functions as an signalpost

17

1) State value function: V_(s)
- Expected reward when starting in state s and following policy it thereafter.
- The mouse needs to know the value of next state before making an action.
2) Action value function: Q_(s,a)
- Expected reward when taking action a in state s and following policy it thereafter.
- The mouse just needs to take an action based on Q value.
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1) State value function: V_(s)
- Expected reward when starting in state s and following policy it thereafter.
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How to find the optimum policy?: two functions as an signalpost
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1) State value function: V_(s)
- Expected reward when starting in state s and following policy it thereafter.
- The mouse needs to know the value of next state before making an action.
2) Action value function: Q_(s,a)
- Expected reward when taking action a in state s and following policy it thereafter.
- The mouse just needs to take an action based on Q value.

Q.(s,al)?
Q. (s,a2)?




How to find the Q(s,a) function?: Q learning

Q.(s,2) =1 +ymaxQ, (s',a)

Immediate Discounted reward
reward of successor state

20



Q learning: example



Q learning: Q(s,a) based on Q table

(J One box represents a state and actions which can be taken by an agent (N, E, S, W)
O Initial Q values at individual states are set to zero
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22 https://hunkim.github.io/ml/RL/rl03.pdf



Q learning: Q(s,a) based on Q table

(J Agent takes an action at each state based on value of Q(s,a).
d Assuming that an agent is at the next to the goal and takes an action to E (East).

o
-

o : olo olo olo (:}

:I.I_-": O 1-1,__...- :I

23 https://hunkim.github.io/ml/RL/rl03.pdf



Q learning: Q(s,a) based on Q table

A Q(s, E) is set to one: 1: (immediate reward) + 0: Q(s’, a’)

Q(s,a) =1 : (immediate reward) + 0 : Q(s’,a’)
24 https://hunkim.github.io/ml/RL/rl03.pdf



Q learning: Q(s,a) based on Q table

J Again assume that an agent ends up to the state below and takes an action to E
 Then, Q(s, E) is set to one: 0 (immediate reward) + 1 Q(s’, a’)

o
-

o o|loioloio

o : olo olo olo (:}

o folo o
!

25 https://hunkim.github.io/ml/RL/rl03.pdf



Q learning: Q(s,a) based on Q table

J Again assume that an agent ends up to the state below and takes an action to E
 Then, Q(s, E) is set to one: 0 (immediate reward) + 1 Q(s’, a’)

o
-

o o|loioloio

o : olo olo olo (:}

o folo o
i

Q(s,a) =0 : (immediate reward) + 1 : Q(s’,a’)
26 https://hunkim.github.io/ml/RL/rl03.pdf



Q learning: Q(s,a) based on Q table

[ In the same way, Q table can be built as follows:

27 https://hunkim.github.io/ml/RL/rl03.pdf



Q learning: Q(s,a) based on Q table

1 The route to the goal is not an optimum.
1 How to select a different route occasionally?

28 https://hunkim.github.io/ml/RL/rl04.pdf



Q learning: Exploit vs Exploration

E-greedy policy Decaying E-greedy policy

foriin range (1000)
e=0.1
e=0.1/(i+1) -2 Random to deterministic

ifrand<e: > 10% random decision decision as iteration goes on

action = random
else: - 90% deterministic decision
action = argmax(Q(s,a))

if rand < e:

action = random
else:

action = argmax(Q(s,a))

29

Machine Learning, T. Mitchell, McGraw Hill p375



Q learning: Exploit vs Exploration

1 The route to the goal is not an optimum.
1 How to select a different route occasionally?

30 https://hunkim.github.io/ml/RL/rl04.pdf



Q learning: Exploit vs Exploration

1 The route to the goal is not an optimum.
1 How to select a different route occasionally?

31 https://hunkim.github.io/ml/RL/rl04.pdf



Q-learning: Discounted reward y

1 Q value does not tell which path is better

Q(s,a) =0 : (immediate reward) + 1 : Q(s’,a’)
32 https://hunkim.github.io/ml/RL/rl04.pdf



Q-learning: Discounted reward y

1 Q value does not tell which path is better
[ Let’s introduce discounted reward y=0.9 to the equation

Q(s,a)=r+yQ(s’a’)=1+0.9x0=1

33 https://hunkim.github.io/ml/RL/rl04.pdf



Q-learning: Discounted reward y

34

1 Q value does not tell which path is better
[ Let’s introduce discounted reward y=0.9 to the equation

o /

o o|lo olofolofo

Q(s,a)=r+yQ(s’,a’)=0+0.9x1=0.9

https://hunkim.github.io/ml/RL/rl04.pdf



Q-learning: Discounted reward y

35

1 Q value does not tell which path is better
[ Let’s introduce discounted reward y=0.9 to the equation

o o|lo olofolofo

Q(s,a)=r+yQ(s’,a’)=0+0.9x0.9=0.81

https://hunkim.github.io/ml/RL/rl04.pdf



Q-learning: Discounted reward y

36

1 Q value does not tell which path is better
[ Let’s introduce discounted reward y=0.9 to the equation

o o|lo o|lo’olo .o

Q(s,a) =r+y Q(s,a’)=0+0.9x 0.81 = 0.729

https://hunkim.github.io/ml/RL/rl04.pdf



Q-learning: Discounted reward y

37

1 Q value does not tell which path is better
[ Let’s introduce discounted reward y=0.9 to the equation

o|lo.olo o

007 29
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Q(s,a)=r+yQ(s’,a’)=0+0.9x1=0.9

https://hunkim.github.io/ml/RL/rl04.pdf



Q-learning: Discounted reward y

1 Q value does not tell which path is better
[ Let’s introduce discounted reward y=0.9 to the equation

Q(s,a)=r+yQ(s’,a’)=0+0.9x1=0.9
38 https://hunkim.github.io/ml/RL/rl04.pdf



Q learning algorithm

For each (s, a) pair, initialize table entry Q(s, a) to zero.
Observe the current state s
Do forever:

= Select an action a and execute it

= Receive immediate reward r

= QObserve the new state s’

= Update the table entry for Q(s, a) as follows:

Exploit & Exploration

e

~ A, Discounted reward
Q(s,a) « r+ymaxQ(s',a’)
"

39 Machine Learning, T. Mitchell, McGraw Hill p375



Deep Q-Networks (DQN)



Q learning problem

1 Q (s,a) needs to be computed for every state(s)-action(a) pair.
- If the problem size is small, we can handle it using Q table

(d When state space is huge: computationally infeasible for entire state space
- Backgammon: 10%° states
- Computer Go: 10179 states
- Automatic driving: continuous state space

(J Too many states to store in memory and also too slow to learn state space

1111

i i

Backgammon Go

41



Deep Q-Network architecture

1 In 2013, a team of DeepMind (AlphaGo) proposed convolutional neural
networks as an approximation of the Q(s, a) function.

 Then, it was named as Deep Q-networks (DQN)

Q(s,a;0) ~Q, (s, a)

Hyper parameters + neural network parameters

state ) DQN

) S,a
action ) (9) Qs.a)

42



Deep Q-Network architecture (2013)

#(s,)

Preprocessing:
RGB to grey

A 4

84x84x4

4 previous frames (s,,5,,53,5,)
(e.g., Single frame cannot tell
the movement of a ball)
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Deep Q-Network architecture (2015)
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Loss function of the DQN

Target Expected
future reward future reward
A
[ ! ) [ \
2
LI(QI) _ E(s,a,r,s'}wU(D} (F +j/ﬂ££?}i Q(S N2 ‘ 9: ) Q(S, ai‘l 91))
\ J
k Y ) |
= Sample data (s,a,r,s’) randomly drawn from data pool U(D) = Two different neural networks
= Experience Replay = Fixed Q-target

state s

action a + reward r

state s’

45



Loss function of the DQN

Target Expected
future reward future reward
A
Ill‘ IIIIIIIIIIIIII AIIIIIIIIIIIIIII\ { \
LI(QI) = E(s,a,r,s’}wU(D} :(F +j/ﬂla}i Q(S a ‘ 9 } Q(S a |9 )) j|
S mmmssmssssssssssssEmsssnssnnnndns |
k Y ) [

= Sample data (s,a,r,s’) randomly drawn from data pool U(D) = Two different neural networks
= Experience Replay = Fixed Q-target

state s state s’ )

action a + reward r

state s’

46



Loss function of the DQN

Target Expected
future reward future reward
A
---‘ llllllllllllll AIIIIIIIIIIIIIII\. ‘ llllllllllllllll \
Lr,'(@z')=E(sars} U(D}|t(r+ymaXQ(S a ‘9 } Q(S a |9)') j|
Assssssssssssssnnnnnnnnnnnnnnnnius® Cemmmmmmmmmmmmns ) we?
k Y ) [

= Sample data (s,a,r,s’) randomly drawn from data pool U(D) = Two different neural networks
= Experience Replay = Fixed Q-target

== Q(s',a",;0)
state s state s’ =)

- } maxQ(s',a’; f)
==Q(s",a", ;6) "

action a + reward r

state s’ DQN
state s ) )

47



Deep Q-Network architecture (2013 & 2015)

1 Neural networks were used previously for RL

- Temporal Difference Learning and TD-Gammon (1992)

- Deep Auto-Encoder Neural Networks in RL (2010)
(d However, they were not successful due to oscillates or divergence of neural nets
(J How does DQN handle this problem?

1) Experience replay

2) Fixed Q-targets

3) Godeep

48



1) Experience replay

J Consecutive data frames are highly correlated
(J Experience replay aims to remove the correlation between data samples
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2) Fixed Q-target

(d Originally the target future reward and the expected future reward are sharing the

same neural net.

Same neural
networks

\
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DQN
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m) Q(S,,;0)

=) Q(s,a,;0)

(2013)

Two different
neural networks
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How effect they are?

2015 DQN
Game : With replay, With replay, Without replay, Without replay,
with targetQ :  without target Q with target Q without target Q
Breakout . 3168 240.7 10.2 3.2
Enduro 1006.3 831.4 141.9 29.1
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest © 28044 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0

Human-level control through deep reinforcement learning, Feb. 26, 2015, Nature

51



Algorithm (DQN 2015)

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N --------------------ooooomm oo » Data pool size and initialization
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax_ Q(¢(s;).a; 0)
Execute action a, in emulator and observe reward r; and image x; . ,
Set s+ 1 =5;,a;,%;+1 and preprocess ¢, ; =¢(s;11)
Store transition (¢,.a;,r:,¢,,,) in D
Sample random minibatch of transitions (gﬁ-,aj,r}-,cpj +1) from D

rj if episode terminates at step j+ 1
Setyj = rj+7 max,y Q(quJrl,a'; 9_) otherwise

Perform a gradient descent step on (yj — Q( 58 9) ) 2 with respect to the
network parameters 0
Every C steps reset Q=0
End For
End For

52 * Human-level control through deep reinforcement learning, Feb. 26, 2015, Nature



Algorithm (DQN 2015)

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N --------------------ooooomm oo » Data pool size and initialization
Initialize action-value function Q with random weights 0 -~ ----------------~ > Weight of 1t NN initialization
Initialize target action-value function Q with weights0 =0 ------------------- + Weight of 2" NN initialization

For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax_ Q(¢(s;).a; 0)
Execute action a, in emulator and observe reward r; and image x; . ,
Set s+ 1 =5;,a;,%;+1 and preprocess ¢, ; =¢(s;11)
Store transition (¢,.a;,r:,¢,,,) in D
Sample random minibatch of transitions (gﬁ-,aj,r}-,cpj +1) from D

rj if episode terminates at step j+ 1
Setyj = rj+7 max,y Q(quH,a’; 9_) otherwise

Perform a gradient descent step on (yj — Q( 58 9) ) 2 with respect to the
network parameters 0
Every C steps reset Q=0
End For
End For

53 * Human-level control through deep reinforcement learning, Feb. 26, 2015, Nature



Algorithm (DQN 2015)

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N --------------------ooooomm oo » Data pool size and initialization

Initialize action-value function Q with random weights 0 ~------------------ » Weight of 1t NN initialization

Initialize target action-value function Q with weights 0~ = ~------------------ + Weight of 2" NN initialization

For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;) ~------------------ + Preprocessing, e.g., RGB to gray
Fort=1,T do

With probability ¢ select a random action a,

otherwise select a; =argmax_ Q(¢(s;).a; 0)

Execute action a, in emulator and observe reward r; and image x; . ,
Set s+ 1 =5;,a;,%;+1 and preprocess ¢, ; =¢(s;11)

Store transition (¢,.a;,r:,¢,,,) in D

Sample random minibatch of transitions (gﬁ-,aj,r}-,cpj +1) from D

rj if episode terminates at step j+ 1
Setyj = rj+7 max,y Q(quH,a’; 9_) otherwise

Perform a gradient descent step on (yj — Q( 58 9) ) 2 with respect to the
network parameters 0
Every C steps reset Q=0
End For
End For
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Algorithm (DQN 2015)

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N --------------------ooooomm oo » Data pool size and initialization

Initialize action-value function Q with random weights 0 ~------------------ » Weight of 1t NN initialization

Initialize target action-value function Q with weights 0~ = ~------------------ + Weight of 2" NN initialization

For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;) ~------------------ + Preprocessing, e.g., RGB to gray
Fort=1,T do

With probability ¢ select a random action a,
} ——————————————————— + Action selection using E-greedy: off-policy

otherwise select a; =argmax_ Q(¢(s;).a; 0)
Execute action a, in emulator and observe reward r; and image x; . ,
Set s+ 1 =5;,a;,%;+1 and preprocess ¢, ; =¢(s;11)

Store transition (¢,.a;,r:,¢,,,) in D

Sample random minibatch of transitions (gﬁ-,aj,r}-,cpj +1) from D

rj if episode terminates at step j+ 1
Setyj = rj+7 max,y Q(quH,a’; 9_) otherwise

Perform a gradient descent step on (yj — Q( 58 9) ) 2 with respect to the
network parameters 0
Every C steps reset Q=0
End For
End For
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Algorithm (DQN 2015)

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N --------------------ooooomm oo » Data pool size and initialization

Initialize action-value function Q with random weights 0 ~------------------ » Weight of 1t NN initialization

Initialize target action-value function Q with weights 0~ = ~------------------ + Weight of 2" NN initialization

For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;) ~------------------ + Preprocessing, e.g., RGB to gray
Fort=1,T do

With probability ¢ select a random action a,
} ——————————————————— + Action selection using E-greedy: off-policy

otherwise select a; =argmax_ Q(¢(s;).a; 0)
Execute action a, in emulator and observe reward r; and image x; . ,

Set s+ 1 =5;,a;,%;+1 and preprocess ¢, ; =¢(s;11)

Store transition (¢,.a;,r:,¢,,,) in D

Sample random minibatch of transitions (n;bj,aj-,r}-,gbj +1) fromD ---------- + Experience replay

rj if episode terminates at step j+ 1
Setyj = rj+7 max,y Q(quH,a’; 9_) otherwise

Perform a gradient descent step on (yj — Q( 58 9) ) 2 with respect to the
network parameters 0
Every C steps reset Q=0
End For
End For
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Algorithm (DQN 2015)

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N --------------------ooooomm oo » Data pool size and initialization

Initialize action-value function Q with random weights 0 ~------------------ » Weight of 1t NN initialization

Initialize target action-value function Q with weights 0~ = ~------------------ + Weight of 2" NN initialization

For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;) ~------------------ + Preprocessing, e.g., RGB to gray
Fort=1,T do

With probability ¢ select a random action a,
} ——————————————————— + Action selection using E-greedy: off-policy

otherwise select a; =argmax_ Q(¢(s;).a; 0)
Execute action a, in emulator and observe reward r; and image x; . ,
Set s+ 1 =5;,a;,%;+1 and preprocess ¢, ; =¢(s;11)

Store transition (rﬁt,at,rt,qbt +1) in D

Sample random minibatch of transitions (n;bj,aj-,r}-,gbj +1) fromD -~~~ + Experience replay
rj if episode terminates at step j+ 1
Sety; = rj+y maxy Q(quJrl,a'; 9_) otherwise ------------------—- » Target future reward is obtained from NN (0)

Perform a gradient descent step on (yj — Q( 58 9) ) 2 with respect to the
network parameters 0
Every C steps reset Q=0
End For
End For
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Algorithm (DQN 2015)

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N --------------------ooooomm oo » Data pool size and initialization

Initialize action-value function Q with random weights 0 ~------------------ » Weight of 1t NN initialization

Initialize target action-value function Q with weights 0~ = ~------------------ + Weight of 2" NN initialization

For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;) ~------------------ + Preprocessing, e.g., RGB to gray
Fort=1,T do

With probability ¢ select a random action a,
} ——————————————————— + Action selection using E-greedy: off-policy

otherwise select a; =argmax_ Q(¢(s;).a; 0)
Execute action a, in emulator and observe reward r; and image x; . ,
Set s+ 1 =5;,a;,%;+1 and preprocess ¢, ; =¢(s;11)

Store transition (rﬁt,at,rt,qbt +1) in D

Sample random minibatch of transitions (n;bj,aj-,r}-,gbj +1) fromD -~~~ + Experience replay
rj if episode terminates at step j+ 1
Sety; = rj+y maxy Q(quJrl,a'; 9_) otherwise ------------------—- » Target future reward is obtained from NN (0)

Perform a gradient descent step on (yj — Q( 58 9) ) ’ with respect to the -------- > Update NN (0) without changing NN (6)
network parameters 0
Every C steps reset Q=0
End For
End For
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Algorithm (DQN 2015)

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N --------------------ooooomm oo » Data pool size and initialization

Initialize action-value function Q with random weights 0 ~------------------ » Weight of 1t NN initialization

Initialize target action-value function Q with weights 0~ = ~------------------ + Weight of 2" NN initialization

For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;) ~------------------ + Preprocessing, e.g., RGB to gray
Fort=1,T do

With probability ¢ select a random action a,
} ——————————————————— + Action selection using E-greedy: off-policy

otherwise select a; =argmax_ Q(¢(s;).a; 0)
Execute action a, in emulator and observe reward r; and image x; . ,
Set s+ 1 =5;,a;,%;+1 and preprocess ¢, ; =¢(s;11)

Store transition (rﬁt,at,rt,qbt +1) in D

Sample random minibatch of transitions (n;bj,aj-,r}-,gbj +1) [ - ------------------ + Experience replay
rj if episode terminates at step j+ 1
Setyj = ri+7y maxy Q(quJrl,a'; 9_) otherwise ------------------- + Target future reward is obtained from NN (0)
2
Perform a gradient descent step on (yj — Q( 58 9)) with respect to the -------- > Update NN (0) without changing NN (6)
network parameters 0
Every Cstepsreset Q=0 ------------------~ + Replace NN (0) with NN (0) every C steps
End For
End For
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Policy Gradient (PG)



Difference between DQN and Policy Gradient

(J When we can approximate Q function for all states and action pairs, we can obtain
the optimal n* by following way:

7*(s)=argmaxQ(s,a) :optimal policy
a

 Policy Gradient (PG) directly optimizes the policy function @ without obtaining Q

function.
- Similar to DQN, PG can also use a neural network (Policy Network): the output is the probability
of each action at given state.
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Loss function for Policy Network (PN): Cross Entropy

[ First, let’s see the overall operation of policy gradient method

Agent takes
predicted the action,
- W w action e.g., Left
B OEE oror e §
o Right: 0.2 = @naction
policy network Environment
(OpenAl gym)
Loss, :-log(0.8) — Left: +1 pu— Reward
. Lossg: O Right: 0 H
Back propagation Assuming we
to train the policy network L, =-1*log(0.8) won the game
due to the action
— _N*
L, =-0*log(0.2) taken previously,
Cross Entropy e.g., loss: -1
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Loss function for Policy Network (PN): Derivation

 Let’s generalize the loss function by introducing Reward.

Agent takes
predicted the action,
t=T t=2 t=1 action e.g., Left
. . . _ Left: Y. Sample @
Wy Right: yR an action ‘
policy network Environment
(OpenAl gym)
Loss,:-Rlog(y,) Left: +R Reward
am ——
Lossg: O Right: 0 *R

Back propagation
to train the policy network
L, =—-R*log(y,)
L, =—-0*log(yg)

Cross Entropy
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Loss function for Policy Network (PN): Derivation - cont

d PG aims to obtain an optimum policy which maximizes the future reward.

1 In the previous slide, we want to train PN in a way that
- When an agent follows the policy given by the outcome of the PN, it expects high future reward.

L;(6) =log(z,(s,a))-R

= Expected future reward
triggered by the sampled action

v
= An action is sampled from a policy
= NN models the policy distribution

v

= “sign disappeared because we want to maximize the reward (good one has large reward)

v

= This equation says: the parameter 0 of PN is updated by optimizing the policy ® which maximizes future reward.
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Q learning vs Policy gradient

= Learning Q(s,a): modeling (Reward) values of actions = Learning m(a): modeling probability of actions

- Value based approach: learning Q values - Policy based approach: learning policy directly

= Deterministic policies: = Stochastic policies

- e.g., cannot model rock-paper-scissors game - e.g., can model rock-paper-scissors game

=  Off-policy: an action is taken greedily = On-policy: an action is taken with a policy

- Greed search to calculate Q(s,a) and then determine a - Following a trajectory created by a policy and update
policy it with given reward at the end.

= Learning update occurred step-by-step (bootstrapping) = Learning update occurred episode-by-episode
- Low variance but high bias - High variance but low bias

)
TR T
2y ) apdy by

High bias High variance
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Action Critic (AC)



Action critic = Q learning + Policy gradient

It aims to deal with following two problems in PG.
1) PG uses episode-by-episode learning update, which disables on-line learning.
2) PG tends to produce a policy with high variance.

Policy Gradient approach
Monte Carlos (MC) Learning
Episode-by-episode
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1) Learning update step-by-step: Policy gradient theorem

 For the first problem, let’s change the reward function R to Q(s, a) function and so

learning update can be done step-by-step, which enables on-line learning.
- Proof in “policy gradient methods for reinforcement learning with function approximation”

Monte Carlos (MC) learning Temporal-Difference (TD) learning

L. (8) =log(z,(s,a))-R ‘ L, (6,) =log(7,(s,a))-Q(s,a)

Y
. AN\
(e N

N (0

T T
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2) Reducing variance

1 For the second problem, let’s introduce “advantage” which replaces “Q function”
d Well, it is a kind of normalization process if you see its definition below.

= How good is the action a at state s
comparing to the average future reward —— A(@) = Q(S,a) —V (S)

at state s? /

Future reward = Future reward at state s
triggered by an = |t is called Baseline
action a at state s

L,(6) =log(z,(s,))-Q(s,8) ===b L,(6,)=log(r,(s,3)- A)
=log(7,(s,a))-(Q(s,a)=V(s))
— |Og(72'9 (St , a‘[)) . (rt+1 + W(Stﬂ) -V (St))
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Actor-Critic

J Actor-Critic is a policy gradient approach which updates a policy in each step
1) Actor determines a policy
2) Critic determines a value function for future reward

---------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------

= We call it “Critic” because it critically(?) evaluates how good
the action taken.

= V/(s) needs to be found to calculate this part

= A neural network can be used to approximate this value

= We call it “Actor” because it determines its action policies!
= Policy needs to be determined based on the result from Critic
= A neural network can be used to approximate the policy
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A3C: Asynchronous Advantage Actor-Critic



Two problems in Actor Critic

1 High bias due to every one step update

J Exploration issue
- DQN uses e-greedy approach to handle exploration issue.
- However, policy gradient approach; Actor Critic does not have the mechanism.
- Stochastic behavior of a policy function can handle the exploration issue partially.

Y -
NN SR
3

4

(D
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1) High Bias every one step update

J A3C introduces multi step updates to handle the problem
d There can be several variations!

L(8) =10g(7, (5,,,)) - (fuy + PV (500) =V (5,)) Lstep 2step 3-step
I—(Q) = |Og(7Z'9 (St y a‘t)) ) (rt+1 Thot 7)‘/ (St+2) -V (St)) t
L(H) - Iog(ﬂe (St ! a‘t)) ) (rt+1 + rt+2 + rt+3 + 7/\/ (St+3) _V (St)) S ’

L(Q) — Iog(ﬂ'e (St 1 at)) ) (rt+1 Tl thst 7\/ (St+3) -V (St))
+10g(7, (S, @) - (Np + Fs + NV (Si,3) =V (S,))

+ |Og(72'9 (St , at)) . (rt+3 + N (St+3) -V (St))
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2) Exploration issue

1 A3Cincludes “entropy of the policy ©” to the loss function in order to improve
exploration by discouraging premature convergence to suboptimal deterministic
policies.

L(6) =log(7, (s, @) (N + WV (81,1) =V (8)) + fH7, (s, &)

| l

= Entropy regularization term
= This term tries to uniformize the probability
distribution of actions defined in the first term.
- Entropy is maximized when all actions
from the policy m are same.
- It aims to occur all action with equal
probability (exploration)

= This term defines the probability
distribution of actions at each state
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Hand-on Experience



OPENAI GYM



OpenAl Gym

U OpenAl :
- A non-profit artificial intelligence (Al) research company that aims to promote and develop
friendly Al in such a way to benefit humanity as a whole.
- In October 2015, Alon Musk et al founded the organization.

- On April 2016, OpenAl released a public beta of “OpenAl Gym”, its platform for reinforcement
learning research.

O OpenAl Gym

- Atoolkit for developing and comparing reinforcement learning algorithms
- https://github.com/openai/gym
- https://gym.openai.com/

Gym is a toolkit for developing and comparing
reinforcement learning algorithms. It supports
teaching agents everything from walking to playing
games like Pong or Pinball.
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https://github.com/openai/gym
https://github.com/openai/gym

OpenAl Gym framework
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OpenAl Gym framework

RL algorithm
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OpenAl Gym framework
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RL algorithm
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OpenAl Gym framework

81

RL algorithm

Take this
action
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OpenAl Gym framework
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RL algorithm

Take this
action
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What to
do?

Action a,
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OpenAl Gym framework
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RL algorithm

Take this
action

E —

«—

What to
do?

Action a,

v

Reward r,

A

State s,

A




OpenAl Gym framework
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RL algorithm

Take this
action

E —

«—

What to
do?

Action a,

v

Reward r,

A

State s,

A

Gym framework



RL algorithm

Take an
action

R —

+—

What to
do?

OpenAl Gym framework: CartPole game

Action a,

Reward r,

State s,




OpenAl Gym framework: CartPole game
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Take an Action a, .
action >
RL algorithm I < Reward r,
R | | State s,
What to — )
do?
import gym
env = gym.make('CartPole-v@')€---------- create a gym object
for i_episode in range(20):
[-0.00907215 0.01075882 -0.0133813 0.01925749] «---------- observation = env.reset()+---------- Initialize state
for t in range(l1e0):
[ © = Jhome/adagio/ML_class [ R R R T R e e R PR env.render() «---------- figure _
print(observation) ,ASkmg to GYM box
O:left, 1:right <«------------- action = env.action_space.sample() »
observation, reward, done, info = env.step(action)
if done:
print("Episode finished after {} timesteps".format(t+1l))
break




OpenAl Gym framework: CartPole game

Take an
action

RL algorithm

o

+—

What to
do?

O State: 4 dimension vector

[0]: cart position [-2.4 to 2.4]

[1]: cart velocity [-Inf to Inf]

[2]: pole angle [-42.8° to 41.8°]

- [3]: pole velocity at tip [-Inf to Inf]

[-0.00907215 ©.01075882 -0.0133813
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Action a,

v

Reward r,

A

State s,

A

0.01025749] < ----——-—--

SOOI < - - - - - - === ==
print(observation)

import gym

env = gym.make('CartPole-v@')€---------- create a gym object
for i_episode in range(20):

observation = env.reset()<«----------
for t in range(1e0):

Initialize state

env.render() ---------- figure
Asking to GYM box
------------- action = env.action_space.sample() ot
observation, reward, done, info = env.step(action)
if done:
print("Episode finished after {} timesteps".format(t+1l))
break



Reinforcement Learning (RL) algorithm

Take an Action a;
action
RL algorithm I Reward r,
R ann State s,
= =
What to
do?

1) Deep Q-Networks (DQN)
2) Policy Gradient (PG)
3) Actor Critic (AC)
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Carpole game: basic information
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O Action:
- 0: left
- 1l:right

[ State: 4 dimension vector
- [O]: cart position [-2.4 to 2.4]
- [1]: cart velocity [-Inf to Inf]
- [2]: pole angle [-42.8" t0 41.8"]
- [3]: pole velocity at tip [-Inf to Inf]

[ Initial state
- Random values between +0.05

] Reward:
- +1 each unit time if it is not fallen

O Episode Termination
- Pole Angle is more than £12°
- Cart Position is more than £2.4

- Episode length is greater than 200 (unit time)

O Training Termination

https://github.com/openai/gym/wiki/CartPole-v0

# Get new state and reward from envirenment

next state, reward, done, _ = env.step(action)

= 10={ndarray} [-0.1062376 -0.37924474 0.19689548 0.9208114 ]

- Average reward is greater than or equal to 195 over 100 consecutive trials



Colab: Cartpole
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1)

2)

3)

4)

5)

0 Fello. Colaborstory - Cnlabnr_

< c 0O

Go to the Colab
=  https://colab.research.google.com

Select “GITHUB” and copy the link below into™" "~ .
=  https://github.com/suyongeum/PMLWS2018 WS5.git ~~

Select the notebook in the list
= Dec_4 2018 cartpole.ipynb

Go to “Runtime” — “Change runtime type”

c 0

& https://colab.research.google.com/notebooks/welcome.ipynb#recent=true

-
-
I

https://github.com/suyongeum/PMLWS2018_WS2.git

-
-
-

-
Enter a GitHub URL&r eea‘mrfby—nrganizalion or user
-

GITHUB

G ITH U B [ include private repos

Q

Repository: [
suyongeum/PMLWS2018_WS2 T

Branch: [4
master ¥

» () ocr23z0spcaipynb

Q OCT 23 2018 _Feature_extraction.ipynb

) ocT_2a 2018 svMipyrb

Path

& https://colab.research.google.com/github/suyongeum/PMLWS... ¢

EEmBs 0

EBOOK ~ CANCEL

= Python3
= GPU

CODE TEXT + |
HEPresenauon or MMNIS |1 aal

[1] from sklearn.datas¢
From sklearn.decomg
import numpy as np
import matplotlib.g

) n |

Save it into your gdrive
=  “Fjle” - “Save a copy in Drive ...”

© digits - losd digit
data, label = digit

print(data.shape)
print(data[@], labe
print(data[1796], 1

e (1797, 64)

[e. @ 5.13.
15. 2. e. 11.
8. 9. 5. o.
8. 8. @. o.
[ e. o.1e. 14.
15. 15. 8. 15.
15. 12. . o.
8. e. @. 1.

q

@ @ e

=~ ©9eT.23 2018 PCA.pynb B

File Edit View Insert Runtime Tools Help

Run all Ctrl+F9
Run before Ctrl+F8
Run the focused cell Ctri+Enter
Run selection Ctrl+Shift+Enter
Run after Ctr+F10
Interrupt execution Ctrl+M |
Restart runtime.... Ctrl+M

Restart and run all...

Reset all runtimes

Change runtime type

Manage sessions

13. 18. @. 9. @.] @
1. 8. @. 8. 2. 1s6. 14. 6.
e. 8. 8. 5. 16. 16. 18. 8
4. 16. 6. 4. 16. 6. 8. 8.
12. 14. 12. 1. @e.] 8

G2 SHARE °

+/ CONNECTED ~

data using the function; "load _digi-
module - actually we doj not need tl
function provided by numpy module
library to plot a graph |

IST data: each digit has 8 by 8 dim 3

he data into two parts: data - its .

shape of data
and its label
and its label

/" EDITING

-~



https://colab.research.google.com/
https://github.com/suyongeum/PMLWS2018_WS5.git

Backup Slides



Cross Entropy

O Do you remember the Cross Entropy which is used to calculate the loss in CNN?
- prediction: predicted label which is the output from the previous layer
- e.g.,[0.1,0.2,0.7]
- |label: true label, one-hot encoded
- e.g.,[0,0,1]

H(p,g) =-> p(x)logq(R) =—logq(X,.,)

X label prediction

prediction label prediction label
0.1 0 0.3 0
CNN CNN
» 0.2 0 » 0.3 0
0.7 1 0.4 1

_0*l0g(0.1)-0*log(0.2)-1*l0g(0.7) = 0.375 _0*l0g(0.3)-0*log(0.3)-1*log(0.4) = 0.916

Good one has small error
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