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LECTURE 05
Quantum Mechanics II: Quantum Machine Learning

Dr. Suyong Eum

CP OSAKA UNIVERSITY



Lecture Outline

1) One key building block of quantum machine learning (QML)
A. Quantum Phase Estimation (QPE)

2) A brief introduction to
A. Harrow-Hassidim-Lloyd (HHL)
B. Quantum SVM (QSVM)
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Quantum Machine Learning: why QPE?
d QPCA and QSVM are the quantum counterparts of PCA and SVM.

d The QPE algorithm is a fundamental building block for many quantum
algorithms, including QPCA and QSVM.

d The QPE algorithm is a versatile and powerful tool in quantum computing,
enabling a wide range of applications.
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Quantum Phase Estimation

Quantum Phase Estimation (QPE)



Quantum Phase Estimation: beginning

d "Quantum Phase Estimation (QPE)" is an algorithm for estimating the
eigenvalues A of a unitary matrix U using a quantum computer.

Ulb) = Alg)

1

O Eigen vector O Eigen value
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Quantum Phase Estimation: beginning

d "Quantum Phase Estimation (QPE)" is an algorithm for estimating the

eigenvalues A of a unitary matrix U using a quantum computer. ———
< 0= Q=1

U |]_|j> — }\l [lj) e?™? = cos(2m®) + isin(2mQ)

Im
A I X = 2mQ

]

O Assuming the matrix U is a unitary matrix,

(WIUTU) = (WIA* Ajw)
(WYY = [A1XY]) A
|}\|2= 1 = ;

A = cos(2®) + isin(2n@) = e27®

Euler’s formula

H Copyright © 2022 OSAKA University. All right reserved.
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% 0=x=2m




Quantum Phase Estimation: beginning

d Thus, the previous expression can be written as follows:

Uly) = Alg) == U|y) = e?™?|)

The phase, @, is in the range between 0 and 1, which has a decimal format (@).

QPE is to estimate the phase, @, using qubits which has a binary format(@,,).
A Thus, it would be convenient to express a decimal format as a binary format.

0=0.0105 ... By = Yjeeq i 27°

where 0= @ =1, and @,, € {0,1}

U

U

0112 = 0.7510

O In the above, when 9,0, ... @, {0,1} are known, the phase @ can be obtained.

Y Y
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Quantum Phase Estimation: toy example

Toy example



Quantum Phase Estimation: toy example

0) — H T H{—-A——
[4) U?’

% We want to know how much phase is made due to
this unitary matrix “U”, given the eigen vector | ).

P)

I

Phase

Ulp) = AlY) == U|p) = e?™®
*

Eigen value

27'[1:@ Please, remember this.
U = e We are going to use it.

ﬂ Copyright © 2022 OSAKA University. All right reserved.




Quantum Phase Estimation: toy example

IO)—HE T H —-AF—
[¥) U?’

+) @ [¥)
= [0)[%) + [1)[)




Quantum Phase Estimation: toy example

* control qubit

0) — H T H ~A

|’¢|) UZG * target qubit

+) ®[¥) 0) |} + [1)U4)
= |0)¥) + [1)[¥) — 10)[1h) + 278061 (1) <))

= (10) + €m0 1)) ® |¥).

]

» The phase of U is encoded in
the top qubit. “Kick back”
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Quantum Phase Estimation: toy example
(1 + eZniO.q§1) |0) +(1 _ eZni0.¢1)|1)

0 A
[4) U?’ |

H(|0) + e*™91]1))

= H|0) + H|1)e?™0-%1
= (10) +[1))+(|0) —[1)) e?70-¢x
— (1 + eZniO.qbl) |O> +(1 _ eZniO.qbl)ll)

B_
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Quantum Phase Estimation: toy example

(1 + eZni0.¢1) |0) +(1 _ eZni0.¢1)|1) ‘
1) If we measure |0)
0) — H T H /74—— - ¢, must be 0,
: : = (1 4+ eZTCi0.0) |O> +(1 _ eZTEi0.0)ll)
0
[4) U2
= 2]0) => |0)
Please, remember that the coefficient -
in front of each term is being omitted.
% The phase (@) becomes either 0 or %, 2) If we measure |1)
% The eigen value (¢2™?) becomes either 1 or -1 = ¢, must be 1.

= (1 + eZniO.lz) |0> +(1 _ eZni0.12)|1>

- (1 -+ €25050) | 0) +(1 — €205, 1)

e2™0 = cos(2r@) + isin(2mD) = 2]|1) => |1)
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Quantum Phase Estimation: general quantum circuit

General Quantum Circuit for QPE

m Copyright (© 2022 OSAKA University. All right reserved.



Quantum Phase Estimation: general quantum circuit

Counting register
“t” input qubits

“t” determines

the accuracy of
the estimation

Second register

d The quantum phase estimation algorithm uses phase kickback
to write the phase of U to the £qubits in the counting register.

B

-

10)

|0

10}

10} —

QFTt

The phase of U matrix is “kickback” to t qubits
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Quantum Phase Estimation: general quantum circuit

Counting register
“t” input qubits

“t” determines
the accuracy of
the estimation

Second register

m_____

QFTt

(10} H
|0) H
[0) H
|0) H
L
il u® e L =

1)
— A
S
-
Ea
|0)
)

Q Inverse Quantum Fourier transform (QFT): (QFT'), which is a

process to read out the output and produce |0) or |1)

Copyright © 2022 OSAKA University. All right reserved.



Quantum Phase Estimation: general quantum circuit

Counting register
“t” input qubits

“t” determines
the accuracy of
the estimation

Second register

10)
|0

10}

|0}

-

0

1

QFTt

2!-1
)

| 1) 1
" (A 1

(A

il

: ~ 0.11..10,
11) ~ 1

Ea 1
10) 0

(A=

0.78 ... .10

O Measurement is carried out, and the phase is encoded
in binary format, e.g., 0.11..10,

O Next, it is converted to decimal format, e.g., 0.78 ....1¢

B
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Quantum Phase Estimation: implementation

Implementation
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Quantum Phase Estimation: Qiskit implementation (t=2)

t=2

S
ey
ey
e 1
g
ey
s
e
ey
e

e
e
b
P 1
S
g
P
=

q D:
Counting register{
g ¥3 4

I
1P{4nf3]
_.

| P (4n/3)

| B (4n/3)

IQOFT dg

Second register | 227 1 X

c: 2/

A Creating the circuit above to estimate the phase of a unitary operator U
which is equivalent to estimate 6 below.

UNJ) — eZTL’iG ‘w)

d Assume that the phase of the unitary matrix U is 47/3. In other words, the
quantum phase estimation algorithm will find the value 6 below.

2m0 = 4 /3 e——)

Bn____

6 = 2/3 §@mmm The answer we expect

Copyright © 2022 OSAKA University. All right reserved.



Quantum Phase Estimation: Qiskit implementation (t=2)

t=2

q 0:
Counting register {
g 1:

| IOFT dg | &
' 5 =l = o
|P{4m"3} |p(4n/3) |P(4n/3) #
—a | B

Second register | 2 2: ]

c: 2/

SR

d The exact solution is "0 =2/3 (4m/3)"” in decimal number.

d The result is approximately “11”, which corresponds to 3/4 in decimal form.

o
o

si-probability
o
B

Qua
=
N

0.0-

he1 Dr 27

Q)k: each digit in binary

6 —_ 0112 = 0.7510

1

1*2-1+1*22=3/4
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Quantum Phase Estimation: Qiskit implementation (t=3)

t=3

q0: 1 5 =

S | H L L)

e | H I | L L 3 L 3

P (4m/3) 'P(QH/B) |p(4n/3) |p(4n/3) |p(4an/3) |P(4n/3) »

q3:4{x = = = ] » =
E

ol g
O

R

«q 0: — 0 ~|E|7

“©

«g 1: 1 IQFT dg M

= el

g Z: —— 2 @

|p(an/3) L

«g 3:

“©

wc: 3/

< 0 1 2

9 — 01012 - 062510

i

1*¥*2-1+ 0*22+1*23=5/8

2400

2850

d What is the reason for using more qubits in the counting register?

B_
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Quantum Phase Estimation: Comparison (t=2) vs (t=3)

00 000

001 111

010 110
error
7 2 _s 4t
5 5§ P
5= 53
100
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Harrow-Hassidim-Lloyd (HHL)

Harrow-Hassidim-Lloyd
(HHL)



Harrow-Hassidim-Lloyd (HHL)

O The HHL is for solving linear systems of equations, developed by Aram Harrow,
Avinatan Hassidim, and Seth Lloyd (HHL) in 2009.

AX =D [—11/3 _11/3] [2] - [(1)]

O Theoretically speaking, the HHL algorithm achieves an exponential
improvement compared to the classical algorithm to solve the problem.

% Quantum algorithm (HHL)

2 = sisthe sparsity: the maximum number of non-zero elements in any row
O(log(N) s“k“/¢) . o . .
= Kk is the condition number: the ratio of the largest and the smallest eigenvalues

= ¢ the precision (error)

%  Classical algorithm (Gaussian elimination)
O(N 3)
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Harrow-Hassidim-Lloyd (HHL): general quantum circuit

O There are three registers

R1) Ancilla qubit o) W) W) lws) W) | ws)
> a single qubit RL) B) 10) — i ~ RY - A — 11
R2) the eigenvalues of A; (NxN) B o). , | E_'O)
» n. = N qubits | QPE || : | | 1QPE ||
R3) the encoded value of |b) R3) B 10)°7 77 U [ o i I

» n. = log;N qubits

E Copyright © 2022 OSAKA University. All right reserved.



Quantum Support Vector Machine (QSVM)

Quantum Support Vector Machine
(QSVM)



Quantum Support Vector Machine (QSVM) with HHL

week ending

PRL 113, 130503 (2014) PHYSICAL REVIEW LETTERS 26 SEPTEMBER 2014

Quantum Support Vector Machine for Big Data Classification

Patrick F\’u\i‘l:lur:nm::uat,l‘3 Masoud ]f'k«ic:nhz?.vi:ni,2 and Seth Lll:zv_t,fdl‘j‘+
'Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
IGaagff Research, Venice, California 90291, USA

A A key idea of the paper is to employ the least-squares reformulation
of the SVM that avoids the quadratic programming and obtains the
parameters from the solution of a linear equation system.

f(a)=(F i) (3)=G) ©

» Then, we can apply the Harrow-Hassidim-Lloyd (HHL) algorithm to handle
SVM, which is called "QSVM"!!

E Copyright © 2022 OSAKA University. All right reserved.




Quantum Support Vector Machine (QSVM) with QKernel

d We formulated SVM as a
quadratic programming

before...

. N N N
min 7(2) =%ZZtntmﬂnﬂmK(xixm) -3,
n=1 m=1 n=1

..............................................................................................................

? A
(0}1) (1,1)
A @ =xl
(0,0) (1,0)
Space X

(1,1,2)

& » 4
(0,0,0) (1,0,0)
Z3

Space Z

B____
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Quantum Support Vector Machine (QSVM)

Quantum Kernel result RBF Kernel result
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d The QPE was explained in detail.

d It is the building block of many quantum applications, making it
essential to understand their operations.

d QSVM was briefly introduced to demonstrate how QPE and HHL
can serve as such building blocks.

Q In the last two lectures, we have only just begun to explore the
surface of quantum mechanics. I hope you have gained a solid
foundation to explore this topic further on your own in the future.
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