

LECTURE 05 Quantum Mechanics II: Quantum Machine Learning

Dr. Suyong Eum

Lecture Outline

- 1) Two key building blocks of quantum machine learning (QML)
	- A. Quantum Phase Estimation (QPE)
	- B. Harrow-Hassidim-Lloyd (HHL)
- 2) a brief introduction to
	- A. Quantum SVM (QSVM)

Quantum Machine Learning: why QPE and HHL?

- ❑ QPCA and QSVM are the quantum counterparts of PCA and SVM.
- ❑ The HHL algorithm is essential for comprehending QSVM.
- ❑ The QPE algorithm is essential for comprehending both the HHL algorithm and QPCA.
- ❑ These are versatile and powerful tools in quantum computing, enabling a range of applications.

Quantum Phase Estimation (QPE)

Quantum Phase Estimation: beginning

❑ "Quantum Phase Estimation (QPE)" is an algorithm for estimating the eigenvalues λ of a **unitary matrix U** using a quantum computer.

Assuming the matrix U is a unitary matrix,

$$
\langle \psi | U^{\dagger} U | \psi \rangle = \langle \psi | \lambda * \lambda | \psi \rangle
$$

$$
\langle \psi | \psi \rangle = | \lambda |^2 \langle \psi | \psi \rangle
$$

$$
| \lambda |^2 = 1
$$

$$
\lambda = \cos(2\pi\emptyset) + i \sin(2\pi\emptyset) = e^{2\pi i \emptyset}
$$

Euler's formula

Quantum Phase Estimation: beginning

Thus, the previous expression can be written as follows:

$$
U|\psi\rangle = \lambda|\psi\rangle \implies U|\psi\rangle = e^{2\pi i \emptyset}|\psi\rangle
$$

The phase, \emptyset , is in the range between 0 and 1, which has a decimal format (\emptyset) .

- QPE is to estimate the phase, \emptyset , using qubits which has a binary format(\emptyset _n).
- Thus, it would be convenient to express a decimal format as a binary format.

$$
\emptyset = 0. \emptyset_1 \emptyset_2 ... \emptyset_n = \sum_{k=1}^n \emptyset_k 2^{-k}
$$

where $0 \le \emptyset \le 1$, and $\emptyset_n \in \{0,1\}$
0.11₂ = 0.75₁₀

In the above, when $\emptyset_1\emptyset_2$... \emptyset_n {0,1} are known, the phase \emptyset can be obtained.

 0.11_2 0.75₁₀

Toy example

❖ We want to know how much phase is made due to this unitary matrix "U", given the eigen vector $|\psi\rangle$.

$$
U|\psi\rangle = \lambda |\psi\rangle \implies U|\psi\rangle = e^{2\pi i \phi} |\psi\rangle
$$

Phase
Eigen value

$$
U = e^{2\pi i \phi} \bigg|_{\text{Please, re}}
$$

$$
2\pi i\emptyset
$$
 Please, remember this.
We are going to use it.

Quantum Phase Estimation: toy example

$$
= (1 + e^{2\pi i 0.\phi_1}) |0\rangle + (1 - e^{2\pi i 0.\phi_1}) |1\rangle
$$

- $= (|0\rangle + |1\rangle) + (|0\rangle |1\rangle) e^{2\pi i 0 \cdot \phi_1}$
- $= H|0\rangle + H|1\rangle e^{2\pi i 0.\phi_1}$
- $H(|0\rangle + e^{2\pi i 0.\phi_1} |1\rangle)$

Quantum Phase Estimation: toy example

Quantum Phase Estimation: toy example

- \dots The phase becomes either **0** or $\frac{1}{2}$,
- **❖** The eigen value becomes either 1 or -1
- 1) If we measure $|0\rangle$
	- \bullet ϕ ₁ must be 0,
	- \Rightarrow $(1 + e^{2\pi i 0.0}) |0\rangle + (1 e^{2\pi i 0.0}) |1\rangle$
	- $= 2|0\rangle$ => $|0\rangle$

Please, remember that the coefficient $\frac{1}{2}$ in front of each term is being omitted.

2) If we measure $|1\rangle$

$$
\bullet \quad \phi_1 \text{ must be 1.}
$$

$$
\Rightarrow (1 + e^{2\pi i 0.1_2}) |0\rangle + (1 - e^{2\pi i 0.1_2}) |1\rangle
$$

= $(1 + e^{2\pi i \cdot 0.5_{10}}) |0\rangle + (1 - e^{2\pi i \cdot 0.5_{10}}) |1\rangle$
 \Rightarrow = $2 |1\rangle$ = $> |1\rangle$

 $e^{2\pi i\phi}$ $= cos(2\pi\phi) + isin(2\pi\phi)$

General Quantum Circuit for QPE

 \Box The quantum phase estimation algorithm uses phase kickback to write the phase of U to the t qubits in the counting register.

□ Inverse Quantum Fourier transform (QFT): (QFT⁺), which is a process to read out the output and produce $|0\rangle$ or $|1\rangle$

- ❑ Measurement is carried out, and the phase is encoded in binary format, e.g., 0.11 . $10₂$
- \Box Next, it is converted to decimal format, e.g., 0.78 ... $_{10}$

Implementation

Quantum Phase Estimation: Qiskit implementation (t=2)

Creating the circuit above to estimate the phase of a unitary operator U which is equivalent to estimate θ below.

$$
U|\psi\rangle = e^{2\pi i\theta}|\psi\rangle
$$

Assume that the phase of the unitary matrix U is $4\pi/3$. In other words, the quantum phase estimation algorithm will find the value θ below.

$$
2\pi\theta = 4\pi/3
$$
 $\theta = 4/6$ The answer we expect

Quantum Phase Estimation: Qiskit implementation (t=2)

The exact solution is " $\theta = 4/6 (4\pi/3)$ " in decimal number.

The result is approximately "11", which corresponds to 3/4 in decimal form.

$$
\sum_{k=1}^n \emptyset_k 2^{-k}
$$

 φ_k : each digit in binary

$$
\theta = 0.11_2 = 0.75_{10}
$$

1*2⁻¹ + 1*2⁻² = 3/4

Quantum Phase Estimation: Qiskit implementation (t=3)

What is the reason for using more qubits in the counting register?

Quantum Phase Estimation: Comparison (t=2) vs (t=3)

Harrow-Hassidim-Lloyd (HHL)

The HHL is for solving linear systems of equations, developed by Aram Harrow, Avinatan Hassidim, and Seth Lloyd (HHL) in 2009.

$$
\mathsf{A}\vec{x} = \vec{b} \qquad \begin{bmatrix} 1 & -1/3 \\ -1/3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

- ❑ Theoretically speaking, the HHL algorithm achieves an exponential improvement compared to the classical algorithm to solve the problem.
	- ❖ Quantum algorithm (HHL)

 $O(\log(N) s^2 \kappa^2/\varepsilon)$

- *s* is the sparsity: the maximum number of non-zero elements in any row
- \bullet κ is the condition number: the ratio of the largest and the smallest eigenvalues
- ε the precision (error)
- ❖ Classical algorithm (Gaussian elimination) $O(N^3)$

Harrow-Hassidim-Lloyd (HHL)

❑ The linear system of equation is presented in the quantum domain through a process called "state preparation".

 $A \vec{x} = \vec{b}$ \implies $A|x\rangle = |b\rangle$

 \Box We would like to obtain $|x\rangle$, so

$$
|\mathbf{x}\rangle = \mathbf{A}^{-1}|\mathbf{b}\rangle
$$

= $\sum_{j=0}^{N-1} 1/\lambda_j |u_j\rangle \langle u_j| |\mathbf{b}\rangle$
= $\sum_{j=0}^{N-1} 1/\lambda_j |u_j\rangle \langle u_j| \sum_{j=0}^{N-1} b_j |u_j\rangle$ - $|u_j|$ = 1
= $\sum_{j=0}^{N-1} 1/\lambda_j b_j |u_j\rangle$
= Inner product of two same vectors $\langle u_j | |u_j\rangle$ is $|u_j|^2$

Harrow-Hassidim-Lloyd (HHL)

So what does it mean?

$$
|x\rangle = \sum_{j=0}^{N-1} 1/\lambda_j b_j |u_j\rangle
$$

- \Box It means that the solution $|x\rangle$ is the amplitudes of the eigen vector $|u_j\rangle$.
- The things that you need to remember to understand the following slides.
	- 1) We need " $1/\lambda_j$ ": inverse of the eigenvalue,
	- 2) $|b\rangle = \sum_{j=0}^{N-1} b_j |u_j\rangle$: the vector $|b\rangle$ can be represented using eigen vectors $|u_j\rangle$,
	- 3) The sum of the squares of the coefficients of $|x\rangle$ equals 1.

$$
\boxed{\sum_{j=0}^{N-1} \left[\frac{b_j}{\lambda_j}\right]^2 = 1}
$$

General Quantum Circuit for HHL

- There are three registers R1) Ancilla qubit
	- \triangleright a single qubit
	- R2) the eigenvalues of A; $(N \times N)$
		- \triangleright n_c = N qubits
	- R3) the encoded value of $|b\rangle$
		- \triangleright n_c = log₂N qubits

U: state preparation

❖ amplitude encoding: encoding a vector as a quantum state, e.g.,

$$
\triangleright \quad \vec{b} \Rightarrow |b\rangle
$$

 $|\psi_1\rangle = |b\rangle^{\otimes n_b} |0\rangle^{\otimes n_c} |0\rangle$

After QPE, we obtain the eigen value $\widetilde{\lambda_j}$ which is encoded in R2 register.

 \Box Then, $|\psi_2\rangle$ becomes ...

$$
|\psi_2\rangle = |b\rangle^{\otimes n_b} |\widetilde{\lambda_j}\rangle^{\otimes n_c} |0\rangle
$$

❑ RY gate

- ❖ Encode the amplitudes of the quantum state based on the eigen values from QPE
- \Box Then, $|\psi_3\rangle$ becomes as follows;

$$
|\psi_3\rangle = |b\rangle^{\otimes n_b} |\widetilde{\lambda}_j\rangle^{\otimes n_c} \left(\sqrt{1 - \frac{C^2}{\lambda_j^2}} |0\rangle + \frac{C}{\lambda_j} |1\rangle \right)
$$

= $\sum_{j=0}^{N-1} b_j |u_j\rangle |\widetilde{\lambda}_j\rangle \left(\sqrt{1 - \frac{C^2}{\lambda_j^2}} |0\rangle + \frac{C}{\lambda_j} |1\rangle \right)$

 $|b\rangle$ is expressed using eigen vector $|u_i\rangle$ basis eigen values from QPE

IQPE is applied, which finally returns $|x\rangle$ at R3) register

 \Box Then, $|\psi_5\rangle$ becomes as follows;

$$
|\psi_4\rangle = \sum_{j=0}^{N-1} 1/\lambda_j b_j |u_j\rangle |\widetilde{\lambda}_j\rangle |1\rangle
$$

Back to original qubit state; QPE =& QPE

$$
|\psi_5\rangle = \sum_{j=0}^{N-1} 1/\lambda_j b_j |u_j\rangle |0\rangle^{\otimes n_c} |1\rangle
$$

$$
|\chi\rangle
$$
 We confirm that it produces $|\chi\rangle$ at the end.

Quantum Support Vector Machine (QSVM)

Quantum Support Vector Machine (QSVM) with HHL

PRL 113, 130503 (2014)

PHYSICAL REVIEW LETTERS

week ending 26 SEPTEMBER 2014

Quantum Support Vector Machine for Big Data Classification

Patrick Rebentrost,^{1,*} Masoud Mohseni,² and Seth Lloyd^{1,3,†} ¹Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ²Google Research, Venice, California 90291, USA

❑ A key idea of the paper is to employ the least-squares reformulation of the SVM that avoids the quadratic programming and obtains the parameters from the solution of a linear equation system.

$$
F\left(\frac{b}{\vec{\alpha}}\right) \equiv \left(\begin{matrix} 0 & \vec{1}^T \\ \vec{1} & K + \gamma^{-1} \vec{1} \end{matrix}\right) \left(\begin{matrix} b \\ \vec{\alpha} \end{matrix}\right) = \left(\begin{matrix} 0 \\ \vec{y} \end{matrix}\right). \tag{5}
$$

➢ Then, we can apply the Harrow-Hassidim-Lloyd (HHL) algorithm to handle SVM, which is called "QSVM"!!

Quantum Support Vector Machine (QSVM) with QKernel

We formulated SVM as a quadratic programming before…

$$
\min_{\lambda} L(\lambda) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m \mathbf{K}(\mathbf{x}_n^T \mathbf{x}_m) - \sum_{n=1}^{N} \lambda_n
$$

s.t. $\lambda \ge 0$, $t^T \lambda = 0$

Quantum Support Vector Machine (QSVM)

Quantum Kernel result **RBF** Kernel result

- ❑ Two main quantum algorithms—namely QPE and HHL—were explained in detail.
- ❑ These algorithms are the building blocks of many quantum applications, making it essential to understand their operations.
- ❑ QSVM was briefly introduced to demonstrate how QPE and HHL can serve as such building blocks.
- \Box In the last two lectures, we have only just begun to explore the surface of quantum mechanics. I hope you have gained a solid foundation to explore this topic further on your own in the future.