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LECTURE 05

Quantum Mechanics II: Quantum Machine Learning
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Lecture Outline

1)  Two key building blocks of quantum machine learning (QML)

A. Quantum Phase Estimation (QPE)

B. Harrow-Hassidim-Lloyd (HHL)

2)  a brief introduction to 

A. Quantum SVM (QSVM)



Copyright ⓒ 2022 OSAKA University. All right reserved.3

Quantum Machine Learning: why QPE and HHL? 

❑ QPCA and QSVM are the quantum counterparts of PCA and SVM.

❑ The HHL algorithm is essential for comprehending QSVM. 

❑ The QPE algorithm is essential for comprehending both the HHL algorithm 
and QPCA. 

❑ These are versatile and powerful tools in quantum computing, enabling a 
range of applications.

QPEHHLQSVM QPCA

QML
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Quantum Phase Estimation

Quantum Phase Estimation (QPE)
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❑ "Quantum Phase Estimation (QPE)" is an algorithm for estimating the 
eigenvalues λ of a unitary matrix U using a quantum computer.  

❑ Assuming the matrix U is a unitary matrix, 

Quantum Phase Estimation: beginning

U ۧψ = λ ۧψ

ψ|U†Uۦ ۧ|ψ = ψ|λۦ ∗ λ ۧ|ψ

ψۦ  ۧ|ψ = |λ|2ۦψ ۧ|ψ  

  |λ|2 = 1

 λ = cos(2𝜋∅) + 𝑖sin(2𝜋∅) = 𝑒2𝜋𝑖∅

𝑒2𝜋𝑖∅ = cos(2𝜋∅) + 𝑖sin(2𝜋∅)

𝑥 = 2𝜋∅

❖ 0≦ x ≦ 2𝜋

❖ 0≦ ∅ ≦1

Euler’s formula
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❑ Thus, the previous expression can be written as follows:

❑ The phase, ∅, is in the range between 0 and 1, which has a decimal format (∅).

❑ QPE is to estimate the phase, ∅, using qubits which has a binary format(∅𝑛).

❑ Thus, it would be convenient to express a decimal format as a binary format.

❑ In the above, when ∅1∅2 …  ∅𝑛 {0,1} are known, the phase ∅ can be obtained.

Quantum Phase Estimation: beginning

∅ = 0. ∅1∅2 …  ∅𝑛

where 0≦ ∅ ≦1, and ∅𝑛 ∈ {0,1} 

= σ𝑘=1
𝑛 ∅𝑘 2−𝑘

U ۧψ = 𝑒2𝜋𝑖∅ ۧψU ۧψ = λ ۧψ

0.112 0.7510

0.112 = 0.7510
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Quantum Phase Estimation: toy example

Toy example
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Quantum Phase Estimation: toy example

❖ We want to know how much phase is made due to 
this unitary matrix “U”, given the eigen vector ۧ|ψ .

U ۧψ = 𝑒2𝜋𝑖∅ ۧψU ۧψ = λ ۧψ

Eigen value
Phase

U= 𝑒2𝜋𝑖∅ Please, remember this.     
We are going to use it.
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H

We temporarily do not write 

down “1/ 2” for convenience. 

=

=

Quantum Phase Estimation: toy example

equal superposition of 
the two basis states
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• control qubit

• target qubit

➢ The phase of U is encoded in 
the top qubit. “Kick back”

Quantum Phase Estimation: toy example
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= 𝐻 ۧ0 + 𝐻 ۧ1 𝑒2𝜋𝑖0.𝜙1

= ( ۧ0 + ۧ1 )+( ۧ0 − ۧ1 ) 𝑒2𝜋𝑖0.𝜙1

= (1 + 𝑒2𝜋𝑖0.𝜙1) | ۧ0  +(1 − 𝑒2𝜋𝑖0.𝜙1)| ۧ1  

(1 + 𝑒2𝜋𝑖0.𝜙1) | ۧ0  +(1 − 𝑒2𝜋𝑖0.𝜙1)| ۧ1  

Quantum Phase Estimation: toy example
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Please, remember that the coefficient ½ 
in front of each term is being omitted.

(1 + 𝑒2𝜋𝑖0.𝜙1) | ۧ0  +(1 − 𝑒2𝜋𝑖0.𝜙1)| ۧ1  

𝑒2𝜋𝑖∅ = cos(2𝜋∅) + 𝑖sin(2𝜋∅)

1) If we measure | ۧ0

▪ φ1 must be 0,

 ⇒ (1 + 𝑒2𝜋𝑖0.0) | ۧ0  +(1 − 𝑒2𝜋𝑖0.0)| ۧ1

  = 2| ۧ0  => | ۧ0

2) If we measure | ۧ1

▪ φ1 must be 1.

 ⇒ (1 + 𝑒2𝜋𝑖0.12) | ۧ0  +(1 − 𝑒2𝜋𝑖0.12)| ۧ1

   = (1 + 𝑒2𝜋𝑖 0.510 )| ۧ0  +(1 − 𝑒2𝜋𝑖 0.510 )| ۧ1

   = 2| ۧ1  => | ۧ1

Quantum Phase Estimation: toy example

❖ The phase becomes either 0 or ½,
❖ The eigen value becomes either 1 or -1
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Quantum Phase Estimation: general quantum circuit

General Quantum Circuit for QPE
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Quantum Phase Estimation: general quantum circuit

Counting register
“t” input qubits

Second register

“t” determines 
the accuracy of 
the estimation

The phase of U matrix is “kickback” to t qubits

❑ The quantum phase estimation algorithm uses phase kickback 
to write the phase of U  to the t qubits in the counting register.
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Quantum Phase Estimation: general quantum circuit

Counting register
“t” input qubits

Second register

“t” determines 
the accuracy of 
the estimation

❑ Inverse Quantum Fourier transform (QFT): (QFT†), which is a 
process to read out the output and produce | ۧ𝟎  or | ۧ𝟏

| ۧ𝟏

| ۧ𝟏

| ۧ𝟏

| ۧ𝟎
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Quantum Phase Estimation: general quantum circuit

Counting register
“t” input qubits

Second register

“t” determines 
the accuracy of 
the estimation

| ۧ𝟏

| ۧ𝟏

| ۧ𝟏

| ۧ𝟏

| ۧ𝟎
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Quantum Phase Estimation: general quantum circuit

Counting register
“t” input qubits

Second register

“t” determines 
the accuracy of 
the estimation

| ۧ1

| ۧ1

| ۧ1

| ۧ0

1

1

1

0

0.11. . 102 

0.78 … .10 

❑ Measurement is carried out, and the phase is encoded in 
binary format, e.g., 0.11. . 102 

❑ Next, it is converted to decimal format, e.g., 0.78 … .10 
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Quantum Phase Estimation: implementation

Implementation
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Quantum Phase Estimation: Qiskit implementation (t=2)

❑ Creating the circuit above to estimate the phase of a unitary operator U 
which is equivalent to estimate θ below.

❑ Assume that the phase of the unitary matrix U  is 4𝜋/3. In other words, the 
quantum phase estimation algorithm will find the value 𝜃 below.

2𝜋𝜃 = 4𝜋/3 𝜃 = 4/6

U ۧψ = 𝑒2𝜋𝑖θ ۧψ

The answer we expect

t=2

Counting register

Second register
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Quantum Phase Estimation: Qiskit implementation (t=2)

❑ The exact solution is “𝜃 =4/6 (4𝜋/3)” in decimal number. 

❑ The result is approximately “11”, which corresponds to 3/4 in decimal form.

t=2

Counting register

Second register

𝜃 = 0.112 = 0.7510

1*2-1 + 1*2-2 = 3/4

σ𝑘=1
𝑛 ∅𝑘 2−𝑘

∅𝑘: each digit in binary 
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Quantum Phase Estimation: Qiskit implementation (t=3)

❑ What is the reason for using more qubits in the counting register?

t=3

𝜃 = 0.1012 = 0.62510

1*2-1 +  0*2-2 + 1*2-3 = 5/8
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Quantum Phase Estimation: Comparison (t=2) vs (t=3)

𝟒

𝟔
 =>

𝟒𝝅

𝟑

3

4
⇒

3𝜋

2

00

10

1101

000

100

110010

001

011 101

111

5

8
⇒

5𝜋

4

t=2 t=3

𝟒

𝟔
 =>

𝟒𝝅

𝟑

error error
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Harrow-Hassidim-Lloyd (HHL)

Harrow-Hassidim-Lloyd 

(HHL)
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Harrow-Hassidim-Lloyd (HHL)

❑ The HHL is for solving linear systems of equations, developed by Aram Harrow, 
Avinatan Hassidim, and Seth Lloyd (HHL) in 2009.

❑ Theoretically speaking, the HHL algorithm achieves an exponential 
improvement compared to the classical algorithm to solve the problem. 

❖ Quantum algorithm (HHL)

❖ Classical algorithm (Gaussian elimination)

Ax = b
1 −1/3

−1/3 1

𝑥1

𝑥2
 = 0

1
 

O(log 𝑁 𝑠2𝜅2/𝜀)
▪ s is the sparsity: the maximum number of non-zero elements in any row

▪ 𝜅 is the condition number: the ratio of the largest and the smallest eigenvalues

▪ 𝜀 the precision (error)

O(𝑁3)
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Harrow-Hassidim-Lloyd (HHL)

❑ The linear system of equation is presented in the quantum domain through a 
process called “state preparation”.

❑ We would like to obtain ۧ|x , so

A ۧ|x = ۧ|bA x = b

ۧ|x = ۧA−1|b

 = σ𝑗=0
𝑁−1 1/𝜆𝑗 ൿ|𝑢𝑗 ൻ𝑢𝑗| ۧ|b

      = σ𝑗=0
𝑁−1 1/𝜆𝑗 ൿ|𝑢𝑗 ൻ𝑢𝑗| σ𝑗=0

𝑁−1 b𝑗 ൿ|𝑢𝑗

    =  σ𝑗=0
𝑁−1 1/𝜆𝑗b𝑗 ൿ|𝑢𝑗

▪ | 𝑢𝑗| =1 

▪ Inner product of two same 

vectors ൻ𝑢𝑗| ൿ|𝑢𝑗   is |𝑢𝑗|2 
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Harrow-Hassidim-Lloyd (HHL)

❑ So what does it mean?

❑ It means that the solution ۧ|x  is the amplitudes of the eigen vector ൿ|𝑢𝑗 .

❑ The things that you need to remember to understand the following slides.

1) We need “1/𝜆𝑗”: inverse of the eigenvalue,

2) | ۧb = σ𝑗=0
𝑁−1 b𝑗 ൿ|𝑢𝑗 : the vector | ۧb  can be represented using eigen vectors ൿ|𝑢𝑗 ,

3) The sum of the squares of the coefficients of ۧ|x  equals 1.

ۧ|x  = σ𝑗=0
𝑁−1 1/𝜆𝑗b𝑗 ൿ|𝑢𝑗

σ𝑗=0
𝑁−1 𝑏𝑗

𝜆𝑗

2

= 1
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Harrow-Hassidim-Lloyd (HHL): general quantum circuit

General Quantum Circuit for HHL
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❑ There are three registers

R1) Ancilla qubit

➢ a single qubit

R2) the eigenvalues of A; (N x N)

➢ nc = N qubits

R3) the encoded value of ۧ|b

➢ nc = log2N qubits

R1)

R2)

R3)

ۧ|0

R3 R2 R1

| ۧψ0  =

Harrow-Hassidim-Lloyd (HHL): general quantum circuit

ۧ|x  = σ𝑗=0
𝑁−1 1/𝜆𝑗b𝑗 ൿ|𝑢𝑗
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❑ U: state preparation

❖ amplitude encoding: 
encoding a vector as a 
quantum state, e.g., 

➢ b => | ۧb

R1)

R2)

R3)

ۧ|0| ۧψ1  = | ۧb

Harrow-Hassidim-Lloyd (HHL): general quantum circuit
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❑ After QPE, we obtain the eigen 

value ෩𝜆𝑗 which is encoded in R2 

register.

❑ Then, | ۧψ2  becomes …

R1)

R2)

R3)

ۧ|0| ۧψ2  = | ۧb ൿ| ෩𝜆𝑗

Harrow-Hassidim-Lloyd (HHL): general quantum circuit
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❑ RY gate

❖ Encode the amplitudes of 
the quantum state based on 
the eigen values from QPE

❑ Then, | ۧψ3  becomes as follows;

R1)

R2)

R3)

| ۧψ3 = | ۧb ൿ| ෩𝜆𝑗
1 −

𝐶2

𝜆𝐽
2

ۧ|0 +
𝐶

λ𝐽
ۧ|1

= σ𝑗=0
𝑁−1 b𝑗 ൿ|𝑢𝑗 ൿ| ෩𝜆𝑗

1 −
𝐶2

𝜆𝐽
2

ۧ|0 +
𝐶

λ𝐽
ۧ|1

ۧ|b  is expressed using 

eigen vector ൿ|𝑢𝑗  basis

eigen values 
from QPE

Harrow-Hassidim-Lloyd (HHL): general quantum circuit
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❑ Only when the outcome is | ۧ1 , 
the output is considered,

❑ Then, | ۧψ4  becomes as follows;

R1)

R2)

R3)

| ۧψ4  =
1

σ𝑗=0
𝑁−1

𝑏𝑗𝐶

𝜆𝑗

2
σ𝑗=0

𝑁−1 b𝑗 ൿ|𝑢𝑗 ൿ| ෩𝜆𝑗
𝐶

λ𝑗
ۧ|1

= σ𝑗=0
𝑁−1 1/𝜆𝑗b𝑗 ൿ|𝑢𝑗 ൿ| ෩𝜆𝑗 ۧ|1

σ𝑗=0
𝑁−1 𝑏𝑗

𝜆𝑗

2

= 1

ۧ|x  = σ𝑗=0
𝑁−1 1/𝜆𝑗b𝑗 ൿ|𝑢𝑗

σ𝑗=0
𝑁−1 b𝑗 ൿ|𝑢𝑗 ൿ| ෩𝜆𝑗

1 −
𝐶2

𝜆𝐽
2

ۧ|0 +
𝐶

λ𝐽
ۧ|1

| ۧψ3  =

Harrow-Hassidim-Lloyd (HHL): general quantum circuit
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❑ IQPE is applied, which finally 
returns | ۧx  at R3) register 

❑ Then, | ۧψ5  becomes as follows;

R1)

R2)

R3)

| ۧψ5  = σ𝑗=0
𝑁−1 1/𝜆𝑗b𝑗 ൿ|𝑢𝑗 ൿ | ෩𝜆𝑗  ۧ|1ۧ|0

ۧ ۧ

| ۧψ4  
= σ𝑗=0

𝑁−1 1/𝜆𝑗b𝑗 ൿ|𝑢𝑗 ൿ| ෩𝜆𝑗 ۧ|1

Back to original qubit state; QPE => IQPE

Harrow-Hassidim-Lloyd (HHL): general quantum circuit

ۧ|x We confirm that it produces ۧ|x  at the end. 
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Quantum Support Vector Machine (QSVM)

Quantum Support Vector Machine

(QSVM)
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Quantum Support Vector Machine (QSVM) with HHL

❑ A key idea of the paper is to employ the least-squares reformulation 
of the SVM that avoids the quadratic programming and obtains the 
parameters from the solution of a linear equation system.

➢ Then, we can apply the Harrow-Hassidim-Lloyd (HHL) algorithm to handle 
SVM, which is called “QSVM”!!
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Quantum Support Vector Machine (QSVM) with QKernel 

❑ We formulated SVM as a 
quadratic programming 
before…
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Quantum Support Vector Machine (QSVM)

RBF Kernel resultQuantum Kernel result
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Summary

❑ Two main quantum algorithms—namely QPE and HHL—were 
explained in detail. 

❑ These algorithms are the building blocks of many quantum 
applications, making it essential to understand their operations.

❑ QSVM was briefly introduced to demonstrate how QPE and HHL 
can serve as such building blocks.

❑ In the last two lectures, we have only just begun to explore the 
surface of quantum mechanics. I hope you have gained a solid 
foundation to explore this topic further on your own in the future.
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