

国際融合科学論/先端融合科学論

LECTURE 04

Quantum Mechanics I: Introduction to Quantum Mechanics

Dr. Suyong Eum

Lecture Outline

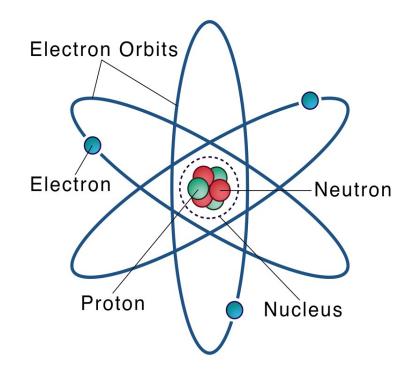
- 1) A brief introduction to Quantum Mechanics
- 2) Quantum Computing
 - Quantum Bit: QUBIT
 - Quantum Gates: Single and multiple qubit gates
 - Quantum Circuits
 - Quantum Algorithm: Deutsch Algorithm

A brief introduction to Quantum Mechanics

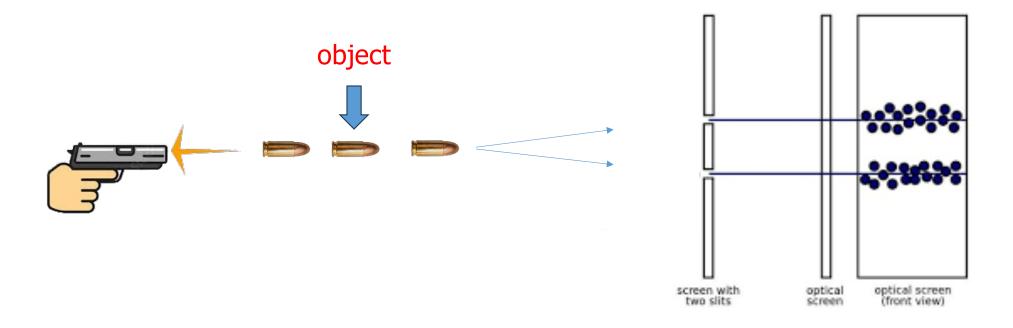
A brief introduction to Quantum Mechanics

A brief introduction to Quantum Mechanics

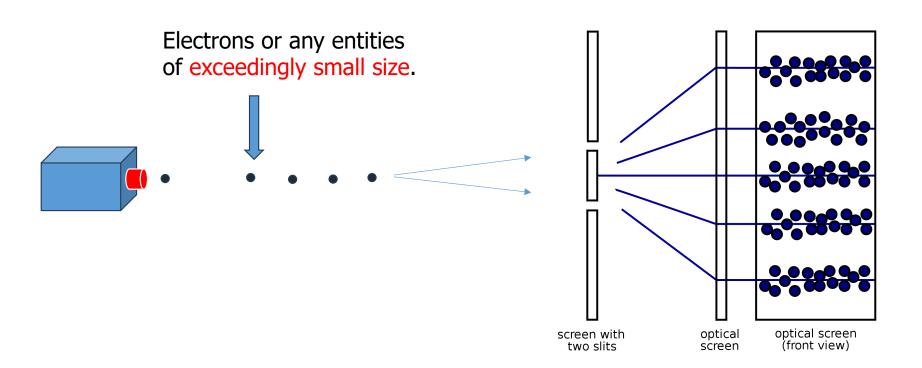
- Why Quantum mechanics?
 - It was developed to explain physical phenomena that Newtonian mechanics could not adequately describe, such as the behavior of particles at atomic and subatomic scales.



Double-slit experiment: Newton mechanics



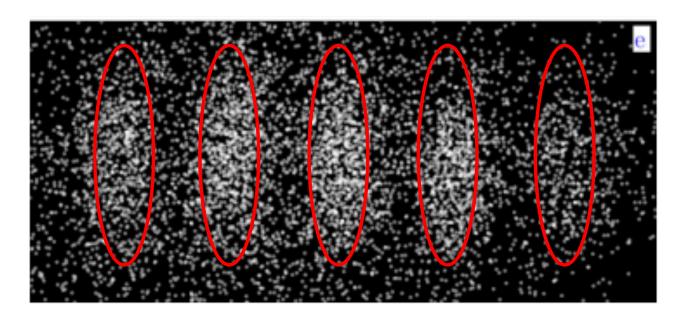
Double-slit experiment: Quantum mechanics



Interference pattern

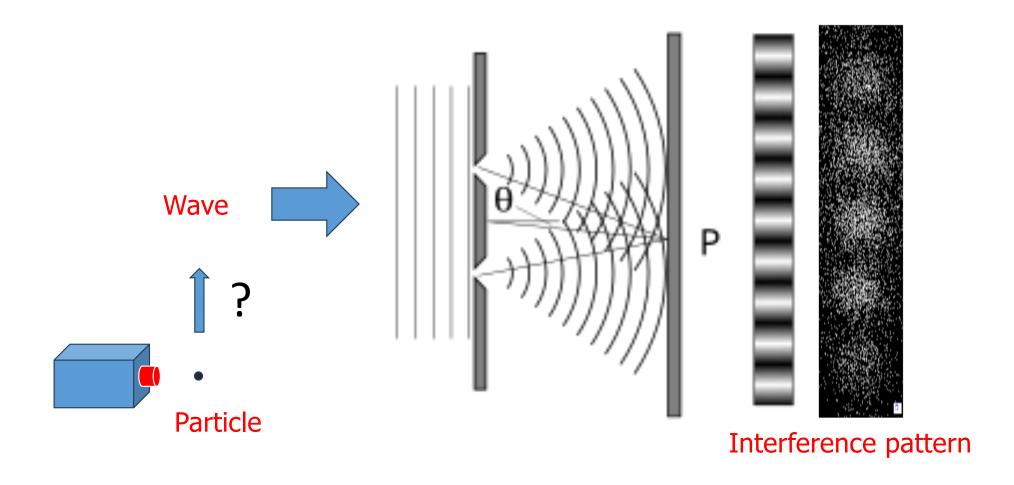
Double-slit experiment: Quantum mechanics

Interference pattern



New Journal of Physics 15 (2013) 033018 (http://www.njp.org/)

Double-slit experiment: Quantum mechanics: wave-particle duality



A brief introduction to Quantum Mechanics

☐ What is Quantum mechanics?

- <u>a mathematical framework</u> or set of rules for the construction of physical theories.
- a fundamental theory in physics that describes the physical phenomenon of nature at the scale of atoms and subatomic particles.
- Some are counter-intuitive even for experts

☐ What is Quantum computing?

- A technology that uses the principles of quantum mechanics to perform computations far better than classical computers.

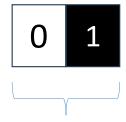
Quantum Computing: Quantum Bit: QUBIT

Quantum Computing

Quantum Bit: QUBIT

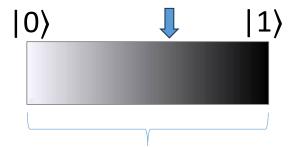
☐ The quantum bit or qubit for short is its analogous concept to the bit in classical computing or information.

Classical Bit



One bit has two states.

Quantum Bit: Qubit



- ☐ One qubit has an infinite number of states.
- \square When **observed**, the state becomes either $|0\rangle$ or $|1\rangle$.
- ☐ Thus, before we observe, a qubit has both |0⟩ and |1⟩ states simultaneously, which is known as "super position".

- ☐ The quantum bit or qubit for short is its analogous concept to the bit in classical computing or information.
- \Box A qubit state is represented as $|\psi\rangle = a|0\rangle + b|1\rangle$
 - Notation like "(|)" is called, <u>bra-ket</u> or <u>Dirac</u> notation,
 - \ \ \ \ : we read it as "bra": row vector,
 - \(\): we read it as "ket": column vector,

- The quantum bit or qubit for short is its analogous concept to the bit in classical computing or information.
- \Box A qubit state is represented as $|\psi\rangle = a|0\rangle + b|1\rangle$
 - ➤ Notation like "⟨ | ⟩" is called, <u>bra-ket</u> or <u>Dirac</u> notation,
 - \ \ \ \ : we read it as "bra": row vector,
 - > |): we read it as "ket": column vector,
 - \geqslant |0 \rangle and |1 \rangle : a two-dimensional vector [1, 0]^T and [0, 1]^T,
 - \rightarrow a and b are complex numbers, $|a|^2 + |b|^2 = 1$
 - $|\psi\rangle = a|0\rangle + b|1\rangle = a\begin{bmatrix}1\\0\end{bmatrix} + b\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}a\\b\end{bmatrix} = \begin{bmatrix}p+qi\\v+wi\end{bmatrix}$

- lacktriangle Inner product between the vectors $| \varphi \rangle$ and $| \psi \rangle$
- ☐ Represented as

$$\langle\, \varphi\,|\, \psi\,
angle$$

Its outcome is <u>a scalar value</u>

$$\langle 0||1\rangle = \langle 0|1\rangle = [1,0]\begin{bmatrix} 0\\1 \end{bmatrix} = 0$$

$$\langle 0|0\rangle = 1$$

$$\langle 0|1\rangle = 0$$

$$\langle 1|0\rangle = 0$$

$$\langle 1|1\rangle = 1$$

- **□** Inner product between $| \varphi \rangle$ and A $| \psi \rangle$: A is a matrix operator
- ☐ Represented as

$$\langle\,\varphi\,|{f A}|\,\psi\,
angle$$

☐ Its outcome is <u>a scalar value</u>

$$\langle 0|A|1\rangle = [1,0]\begin{bmatrix} e_{11}e_{12} \\ e_{21}e_{22} \end{bmatrix}\begin{bmatrix} 0 \\ 1 \end{bmatrix} = [1,0]\begin{bmatrix} e_{12} \\ e_{22} \end{bmatrix} = e_{12}$$

- \Box **Tensor product** of the vectors $| \varphi \rangle$ and $| \psi \rangle$
- ☐ Represented as

$$|\varphi\rangle\otimes|\psi\rangle = |\varphi\rangle|\psi\rangle = |\varphi\psi\rangle$$

☐ Its outcome is <u>a vector</u>

$$|0\rangle|1\rangle = |01\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ 0 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$|00\rangle = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$

$$|01\rangle = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$

$$|10\rangle = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$|11\rangle = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

- \square **Tensor product** of the $|\varphi\rangle$, k times
- Represented as

$$|\varphi\rangle^{\otimes k} = |\varphi\rangle\otimes|\varphi\rangle\otimes...\otimes|\varphi\rangle$$

Its outcome is <u>a vector</u>

$$|\varphi\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$$

$$| \varphi \rangle^{\otimes 2} = ?$$

$$|\varphi\rangle = \left(\begin{bmatrix} 1\\0 \end{bmatrix} + \begin{bmatrix} 0\\1 \end{bmatrix}\right) / \sqrt{2}$$
$$= \begin{bmatrix} 1\\1 \end{bmatrix} / \sqrt{2}$$

$$|\varphi\rangle^{\otimes 2} = \begin{bmatrix} 1\\1 \end{bmatrix} / \sqrt{2} \otimes \begin{bmatrix} 1\\1 \end{bmatrix} / \sqrt{2}$$

$$= (1/\sqrt{2})^2 \begin{bmatrix} 1\\1 \end{bmatrix} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}$$

$$= (1/2) \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

- \Box **Outer product** of the vectors $| \varphi \rangle$ and $\langle \psi |$
- □ Represented as

$$\mid \phi \left
angle \left\langle \psi \mid \right
angle$$

Its outcome is <u>an operator matrix</u>

$$|1\rangle \langle 1| = \begin{bmatrix} 0 \\ 1 \end{bmatrix} [0,1] = \begin{bmatrix} 00 \\ 01 \end{bmatrix}$$

$$|0\rangle \langle 0| = \begin{bmatrix} 10 \\ 00 \end{bmatrix}$$

$$|0\rangle \langle 1| = \begin{bmatrix} 01\\00 \end{bmatrix}$$

$$|1\rangle \langle 0| = \begin{bmatrix} 00 \\ 10 \end{bmatrix}$$

$$|1\rangle \langle 1| = \begin{bmatrix} 00\\01 \end{bmatrix}$$

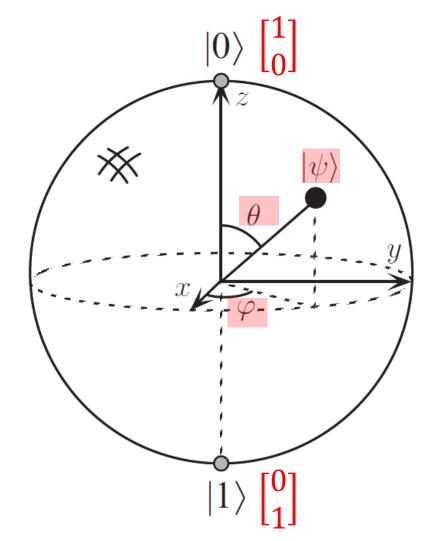
Quantum Bit: its geometric representation

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

□ A qubit state is initially described by four real variables (p,q,v,w);

□ A qubit state can be mapped onto a single point on the sphere known as "Bloch Sphere."

2 parameters (φ, θ)



Quantum Bit control: Single Qubit Gates

- □ A single qubit gate is a function (matrix operator) which takes a single qubit state as an input and returns its value as an output.
- Some important single qubit gates

Pauli Transformation Gates

$$I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$Y \equiv \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] \qquad Z \equiv \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$$

Hadamard Gate

$$H \equiv \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

- □ A single qubit gate is a function (matrix operator) which takes a single qubit state as an input and returns its value as an output.
- Some important single qubit gates

Pauli Transformation Gates

$$I \equiv \left[egin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}
ight] \quad X \equiv \left[egin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array}
ight]$$

$$Y \equiv \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] \qquad Z \equiv \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$$

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$X \longrightarrow X \longrightarrow \beta |0\rangle + \alpha |1\rangle$$

$$X|\psi\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

$$= \begin{bmatrix} \beta \\ \alpha \end{bmatrix} = \begin{bmatrix} \beta \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \alpha \end{bmatrix}$$

$$= \beta |0\rangle + \alpha |1\rangle$$

- □ A single qubit gate is a function (matrix operator) which takes a single qubit state as an input and returns its value as an output.
- Some important single qubit gates

Hadamard Gate

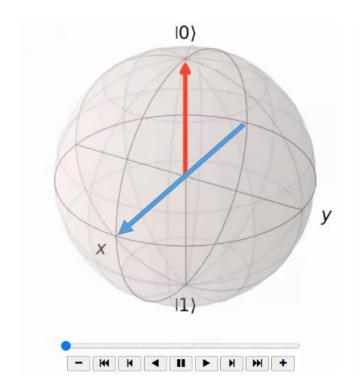
$$H \equiv \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

- One of the most useful quantum gates creating an equal superposition of the two basis states

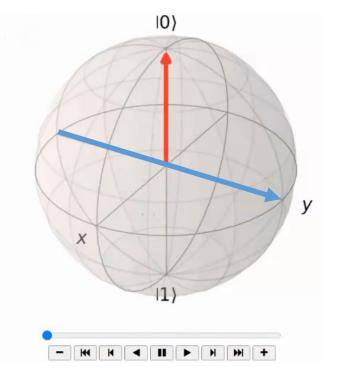
e.g.
$$H|0\rangle = 1/\sqrt{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

= $1/\sqrt{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1/\sqrt{2} (\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}) = 1/\sqrt{2} |0\rangle + 1/\sqrt{2} |1\rangle$

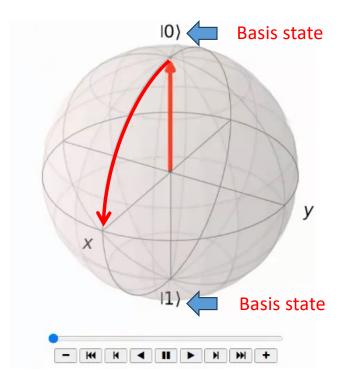
Quantum Bit: its geometric representation



X gate Rotating around the X-axis

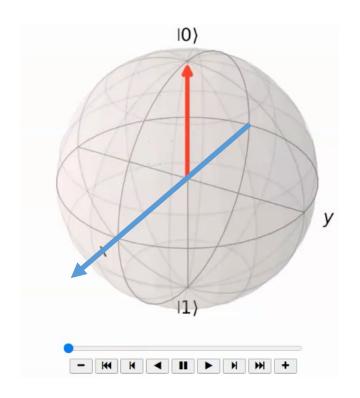


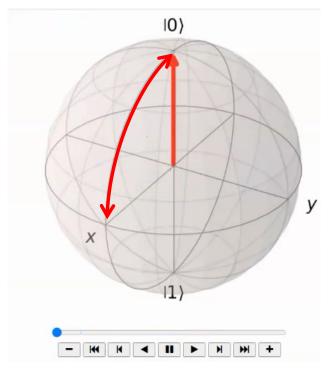
Y gate Rotating around the Y-axis

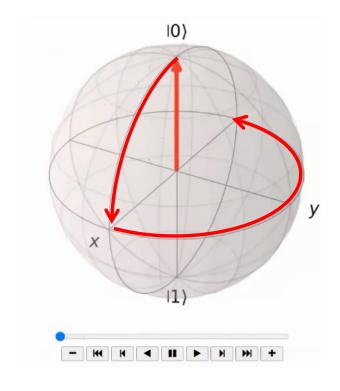


Hadamard gate

Quantum Bit: its geometric representation







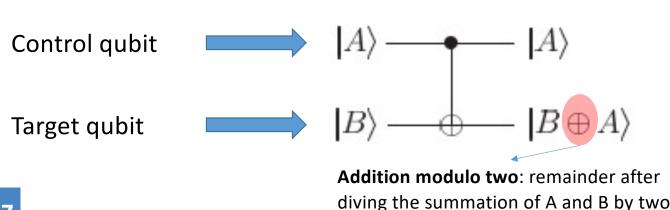
Quantum Bit control: multiple qubit gate

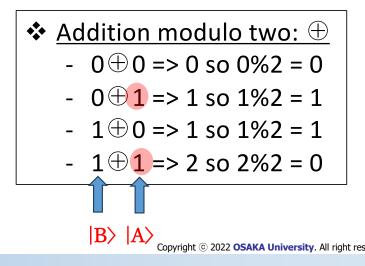
Quantum Bit control:

Gate for multiple Qubits

Quantum Bit control: multiple qubit gate

- ☐ Controlled-NOT gate
 - In short, **CNOT** Gate or **CX** Gate.
 - It has two input qubits; the control qubit and the target qubit.
 - If the control bit is 0, the target bit does not change.
 - If the control bit is 1, the target bit is flipped.





Quantum Bit control: multiple qubit gate

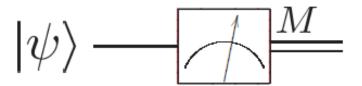
- One important thing you need to remember is
 - There are many interesting qubit gates however CNOT gate and single qubit gates are the prototypes for all other gates.
 - Any multiple qubit logic gate may be composed from CNOT gate and single qubit gates.

Quantum Circuits

Quantum Circuits

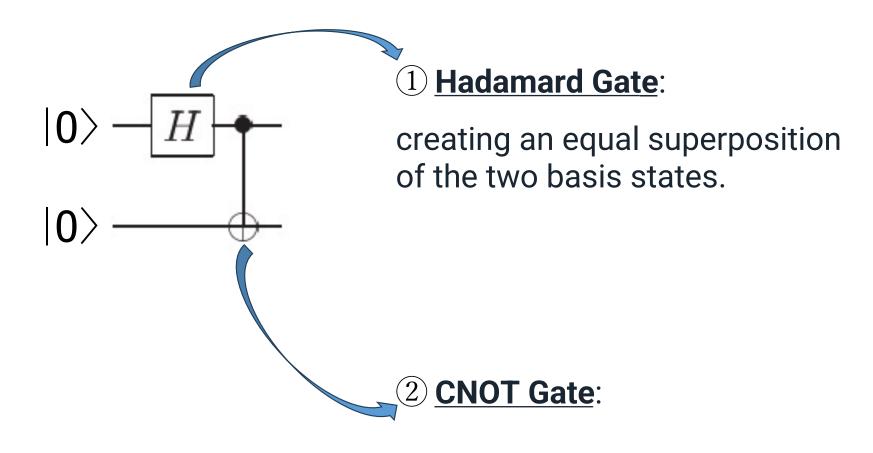
Quantum Circuits

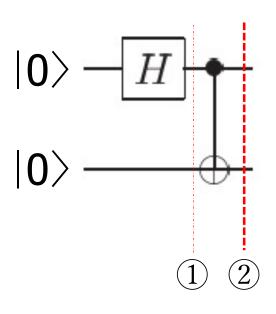
- A quantum circuit is a sequence of quantum gates and measurements designed to perform a specific quantum computation or algorithm on qubits.
- \Box The circuit is read from left-to-right. The state input to the circuit is usually the state consisting of all $|0\rangle$ s unless otherwise noted.



Quantum circuit symbol for measurement

- □ A quantum circuit for creating Bell state, also known as entanglement state.
- Entangled quantum state of two qubits says,
 - Knowing the state of one qubit automatically reveals the state of the other qubit regardless of the geographical locations of the two qubits.
- ☐ Bell state is created by Hadamard Gate followed by CNOT gate.





1 Hadamard Gate:

creating an equal superposition of the two basis states.

Control bit

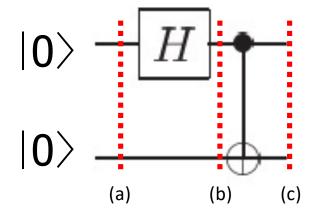
$$(H|0\rangle)\otimes|0\rangle = 1/\sqrt{2}(|0\rangle + |1\rangle)\otimes|0\rangle$$
$$= 1/\sqrt{2}(|00\rangle + |10\rangle)$$

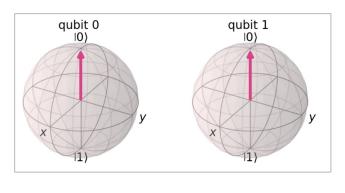
Control bit 0: not changing

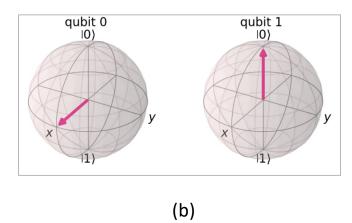
2 CNOT Gate:

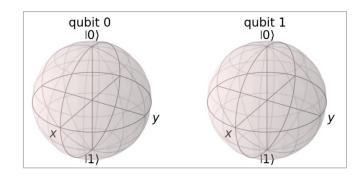
Control bit 1: changing 0 to 1

$$1/\sqrt{2} |00\rangle + 1/\sqrt{2} |11\rangle$$







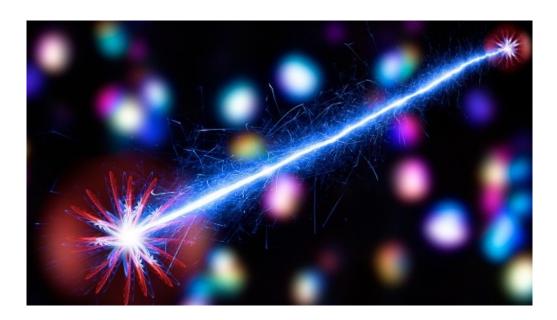


(a)

(c)

Quantum Circuits: Bell state: entanglement

- ☐ When the quantum states of two particles (e.g. photons) cannot be considered independently, we refer to quantum entanglement.
- ☐ In the case of two entangled particles, for example, this means that a measurement of one particle collapses not only its wave-function (and therefore determines its state), but also that of its twin.



https://www.nature.com/collections/aegdeibjfi

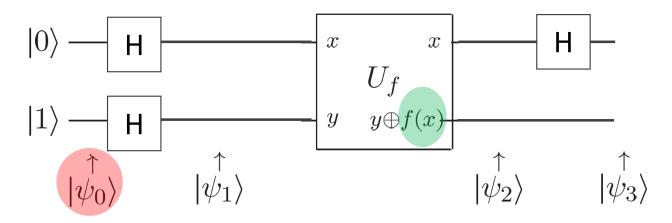
Quantum Algorithm

Quantum Algorithm Deutsch algorithm

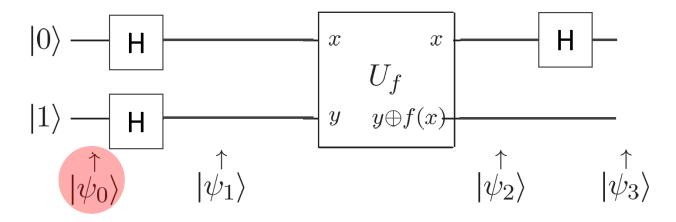
- \Box Given a binary function f(x), tell me whether it is either
 - Constant function: f(A) == f(B) or
 - Balanced function: f(A) != f(B)
- ☐ In a classic computing, it requires <u>two evaluations</u> to identify whether the function is constant or balanced function.
- In a quantum computing, it requires only one evaluation!
- ☐ One of the first examples which demonstrates a quantum algorithm is better than a classical algorithm.

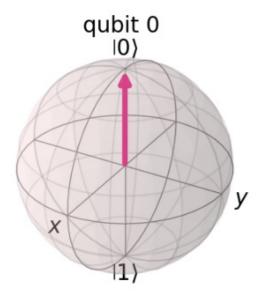
- Assuming that the binary function takes (n=3) bits as input and it gives you one bit as output.
- ☐ In a classic computing, how many queries need to identify whether it is constant or balanced function?

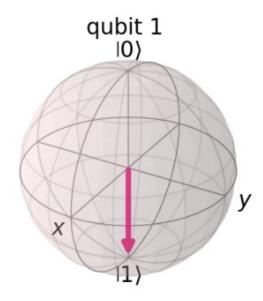
Constant	Balanced				Classic algorithm	
function	function	-	# of queries to verify	600		
f(000) = 0	f(000) = 0		if it is constant or	500	Quantum algorithm	
f(001) = 0	f(001) = 0	balanced function $\sim 2^{n-1}$	balanced function.	400 —	(one operation)	
f(010) = 0	f(010) = 0	2		300 200		
f(011) = 0	f(011) = 0			100		
f(100) = 0	f(100) = 1	2 ⁿ⁻¹ +1		0	1 2 3 4 5 6 7 8 9 10	
f(101) = 0	f(101) = 1	In the wo	orst case vou		n: the number of input bits	
f(110) = 0	f(110) = 1	<u>In the worst case</u> , you need to make queries as			in the named of input sits	
f(111) = 0	f(111) = 1	many as this number				
					Copyright © 2022 OSAKA University. All right re	

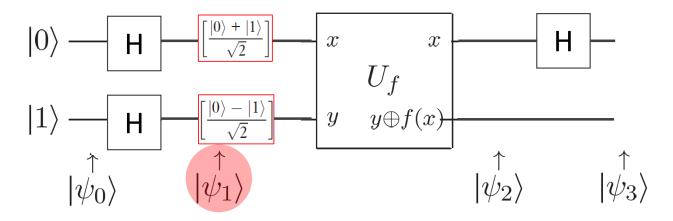


- \Box Here we want to verify whether the function f(x) is constant or balanced function.
- \Box First, the input state, $|\psi_0\rangle = |01\rangle$, is fed into the quantum circuit.





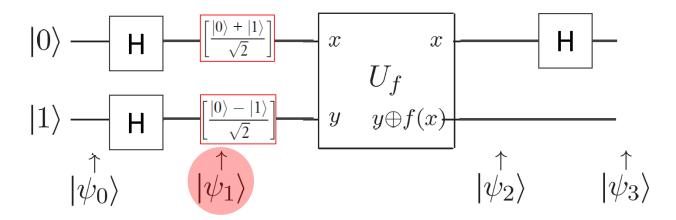


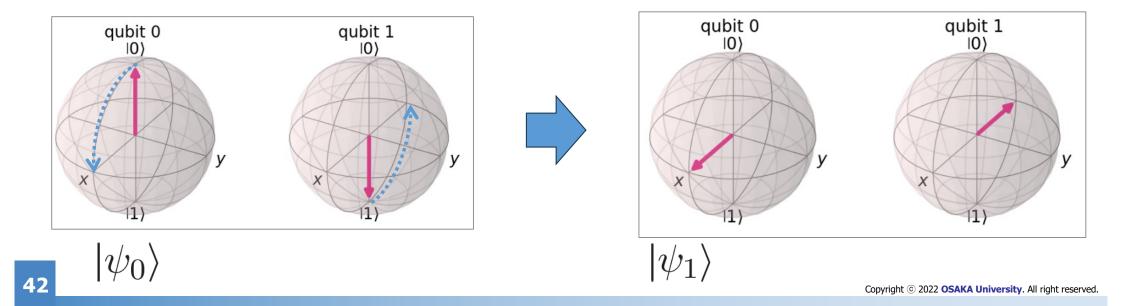


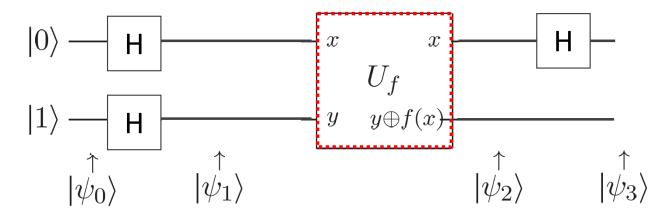
- \square Each of the qubit, $|0\rangle$ and $|1\rangle$, is sent through two Hadamard gates,
 - Hadamard gate: creating an equal superposition of the two basis states

Hadamard Gate

$$H \equiv \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

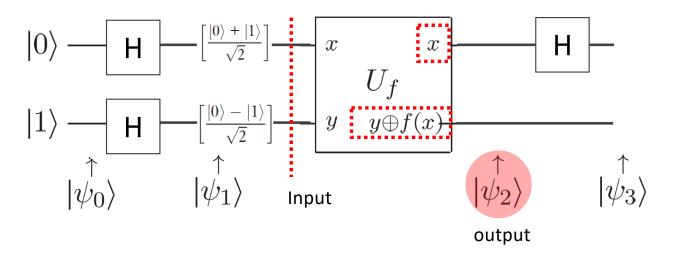






□ Oracle function (U_f)

- In ancient Greece, an oracle was a priest who made statements about future events or about the truth
- Then, an oracle function is similar in a way that we don't know what the function produces given input value ...



☐ Input:

$$|\psi_1\rangle = \left\lceil \frac{|0\rangle + |1\rangle}{\sqrt{2}} \right\rceil \left\lceil \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right\rceil = 1/2 \left\lceil \frac{|0\rangle}{00} + |10\rangle - |01\rangle - |11\rangle \right\rceil$$

Output:

$$|\psi_2\rangle = 1/2 \left[|0, 0 \oplus f(0)\rangle + |1, 0 \oplus f(1)\rangle - |0, 1 \oplus f(0)\rangle - |1, 1 \oplus f(1)\rangle \right]$$

$$x \quad y \oplus f(x)$$

□ Output:

$$|\psi_{2}\rangle = 1/2 [|0, 0 \oplus f(0)\rangle + |1, 0 \oplus f(1)\rangle - |0, 1 \oplus f(0)\rangle - |1, 1 \oplus f(1)\rangle]$$

□ Output:

$$|\psi_2\rangle = 1/2 [|0,0 \oplus f(0)\rangle + |1,0 \oplus f(1)\rangle - |0,1 \oplus f(0)\rangle - |1,1 \oplus f(1)\rangle]$$

❖ Addition modulo two: ⊕

$$-0 \oplus 0 => 0$$
 so $0\%2 = 0$

$$-0 \oplus 1 => 1 \text{ so } 1\%2 = 1$$

$$-1 \oplus 0 => 1 \text{ so } 1\%2 = 1$$

$$-1 \oplus 1 => 2 \text{ so } 2\%2 = 0$$

Constant function: f(0) == f(1)

= 1/2 [
$$|0, f(0)\rangle + |1, f(1)\rangle - |0, \overline{f(0)}\rangle - |1, \overline{f(1)}\rangle$$
]

If the bit is 1, the target bit is flipped.

If the bit is 0, the target bit does not change.

Output:

$$|\psi_{2}\rangle = 1/2 [|0, 0 \oplus f(0)\rangle + |1, 0 \oplus f(1)\rangle - |0, 1 \oplus f(0)\rangle - |1, 1 \oplus f(1)\rangle]$$

❖ Addition modulo two: ⊕

$$-0 \oplus 0 => 0$$
 so $0\%2 = 0$

$$-0 \oplus 1 => 1 \text{ so } 1\%2 = 1$$

$$-1 \oplus 0 \Rightarrow 1 \text{ so } 1\%2 = 1$$

-
$$1 \oplus 1 => 2$$
 so $2\%2 = 0$

Constant function: f(0) == f(1)

= 1/2 [
$$|0, f(0)\rangle + |1, f(1)\rangle - |0, \overline{f(0)}\rangle - |1, \overline{f(1)}\rangle$$

= 1/2 [|0, f(0)>+|1, f(1)>-|0,
$$\overline{f(0)}>-|1, \overline{f(1)}>$$
]
= 1/2 [|0, f(0)>+|1, f(0)>-|0, $\overline{f(0)}>-|1, \overline{f(0)}>$

Simplify the equation in terms of f(0)

□ Output:

$$|\psi_{2}\rangle = 1/2 [|0, 0 \oplus f(0)\rangle + |1, 0 \oplus f(1)\rangle - |0, 1 \oplus f(0)\rangle - |1, 1 \oplus f(1)\rangle]$$

❖ Addition modulo two: ⊕

$$-0 \oplus 0 => 0$$
 so $0\%2 = 0$

$$-0 \oplus 1 => 1 \text{ so } 1\%2 = 1$$

-
$$1 \oplus 0 \Rightarrow 1 \text{ so } 1\%2 = 1$$

$$-1 \oplus 1 => 2 \text{ so } 2\%2 = 0$$

Constant function: f(0) == f(1)

= 1/2 [
$$|0, f(0)\rangle + |1, f(1)\rangle - |0, \overline{f(0)}\rangle - |1, \overline{f(1)}\rangle$$
]

=
$$1/2 [|0, f(0)\rangle + |1, f(0)\rangle - |0, \overline{f(0)}\rangle - |1, \overline{f(0)}]$$

=
$$1/2 [(|0\rangle + |1\rangle)(f(0) - \overline{f(0)})]$$

factorization

□ Output:

$$| \psi_2 \rangle = 1/2 [|0, 0 \oplus f(0) \rangle + |1, 0 \oplus f(1) \rangle - |0, 1 \oplus f(0) \rangle - |1, 1 \oplus f(1) \rangle]$$

❖ Addition modulo two: ⊕

$$-0 \oplus 0 => 0$$
 so $0\%2 = 0$

$$-0 \oplus 1 => 1 \text{ so } 1\%2 = 1$$

-
$$1 \oplus 0 \Rightarrow 1 \text{ so } 1\%2 = 1$$

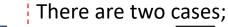
-
$$1 \oplus 1 => 2$$
 so $2\%2 = 0$

= 1/2 [
$$|0, f(0)\rangle + |1, f(1)\rangle - |0, \overline{f(0)}\rangle - |1, \overline{f(1)}\rangle$$
]

=
$$1/2 [|0, f(0)\rangle + |1, f(0)\rangle - |0, \overline{f(0)}\rangle - |1, \overline{f(0)}]$$

=
$$1/2 [(|0\rangle + |1\rangle)(f(0) - \overline{f(0)})]$$

$$= \pm 1/2 [(|0\rangle + |1\rangle)(|0\rangle - |1\rangle)]$$



1)
$$f(0) = |0\rangle, \overline{f(0)} = |1\rangle$$

2)
$$f(0) = |1\rangle, \overline{f(0)} = |0\rangle,$$

Thus,
$$(f(0) - \overline{f(0)})$$
 becomes $\pm (|0\rangle - |1\rangle)$

□ Output:

$$|\psi_{2}\rangle = 1/2 [|0, 0 \oplus f(0)\rangle + |1, 0 \oplus f(1)\rangle - |0, 1 \oplus f(0)\rangle - |1, 1 \oplus f(1)\rangle]$$

❖ Addition modulo two: ⊕

$$-0 \oplus 0 => 0$$
 so $0\%2 = 0$

$$-0 \oplus 1 => 1 \text{ so } 1\%2 = 1$$

-
$$1 \oplus 0 \Rightarrow 1 \text{ so } 1\%2 = 1$$

-
$$1 \oplus 1 => 2$$
 so $2\%2 = 0$

= 1/2 [
$$|0, f(0)\rangle + |1, f(1)\rangle - |0, \overline{f(0)}\rangle - |1, \overline{f(1)}\rangle$$
]

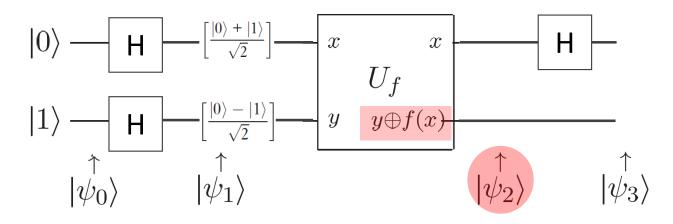
=
$$1/2 [|0, f(0)\rangle + |1, f(0)\rangle - |0, \overline{f(0)}\rangle - |1, \overline{f(0)}]$$

=
$$1/2 [(|0\rangle + |1\rangle)(f(0) - \overline{f(0)})]$$

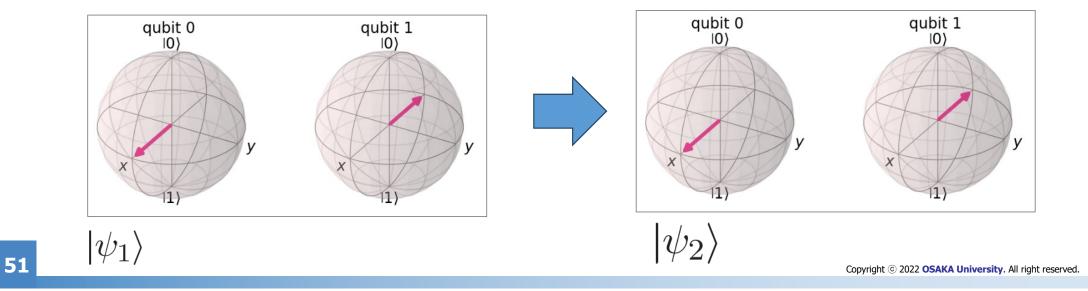
$$= \pm 1/2 [(|0\rangle + |1\rangle)(|0\rangle - |1\rangle)]$$

$$= \pm \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right]$$

$$|\psi_{2}\rangle = \pm \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$



$$|\psi_2\rangle = \pm \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$



☐ Output:

$$|\psi_{2}\rangle = 1/2 [|0, 0 \oplus f(0)\rangle + |1, 0 \oplus f(1)\rangle - |0, 1 \oplus f(0)\rangle - |1, 1 \oplus f(1)\rangle]$$

❖ Addition modulo two: ⊕

$$-0 \oplus 0 => 0$$
 so $0\%2 = 0$

$$-0 \oplus 1 => 1 \text{ so } 1\%2 = 1$$

-
$$1 \oplus 0 => 1$$
 so $1\%2 = 1$

$$-1 \oplus 1 => 2 \text{ so } 2\%2 = 0$$

Balanced function: f(0) != f(1)

= 1/2 [
$$|0, f(0)\rangle + |1, f(1)\rangle - |0, \overline{f(0)}\rangle - |1, \overline{f(1)}\rangle$$
]

=
$$1/2 [|0, f(0)\rangle + |1, f(1)\rangle - |0, f(1)\rangle - |1, f(0)]$$

=
$$1/2 [(|0\rangle - |1\rangle)(f(0) - f(1))]$$

$$= \pm 1/2 [(|0\rangle - |1\rangle)(|0\rangle - |1\rangle)]$$

$$= \pm \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right]$$

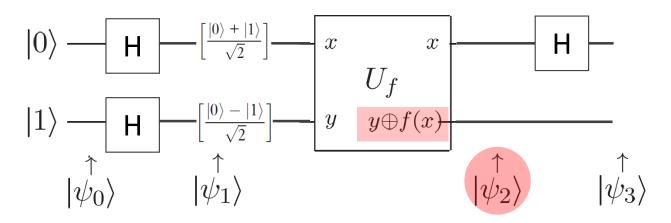
There are two cases;

1)
$$f(0) = |0\rangle$$
, $f(1) = |1\rangle$

2)
$$f(0) = |1\rangle$$
, $f(1) = |0\rangle$,

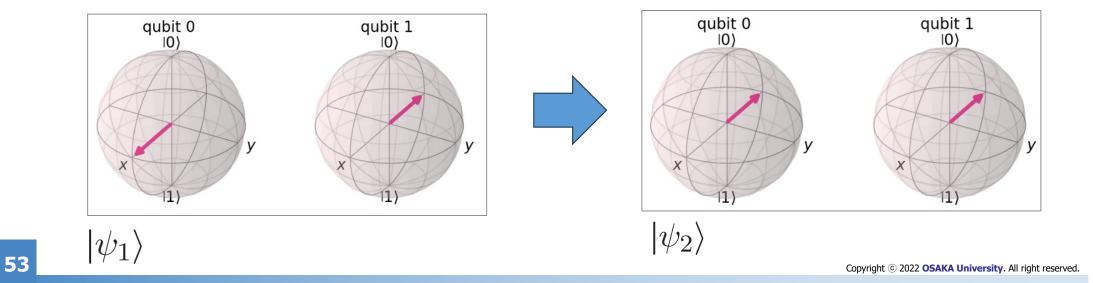
Thus,
$$(f(0)-f(1))$$
 becomes $\pm (|0\rangle-|1\rangle)$

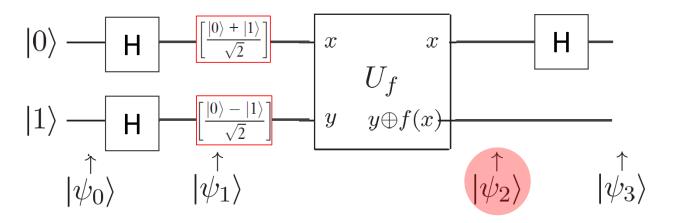
$$|\psi_{2}\rangle = \pm \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$



Balanced function: f(0) == f(1)

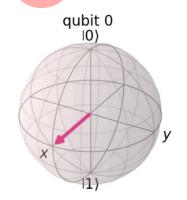
$$|\psi_{2}\rangle = \pm \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

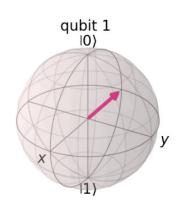




Constant function: f(0) == f(1)

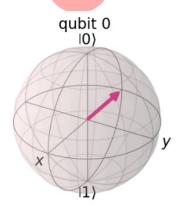
$$|\psi_2\rangle = \pm \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

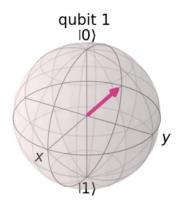


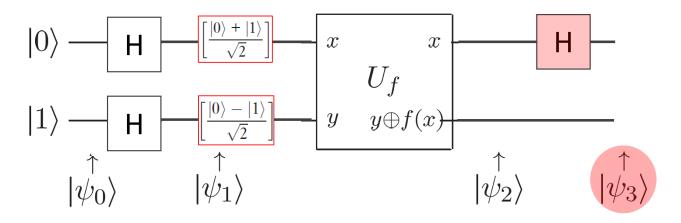


Balanced function: f(0) != f(1)

$$|\psi_2\rangle = \pm \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$







Constant function: f(0) == f(1)

$$|\psi_{2}\rangle = \pm \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

$$|\psi_{3}\rangle = \pm \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \frac{|0\rangle + |1\rangle}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{bmatrix}$$

$$= \pm \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{bmatrix}$$

$$= \pm \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{bmatrix} = \pm \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{bmatrix}$$

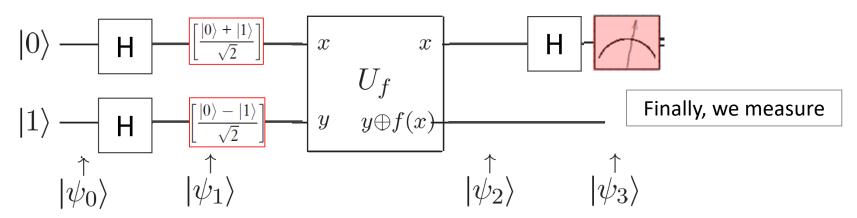
Balanced function: f(0) != f(1)

$$|\psi_{2}\rangle = \pm \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

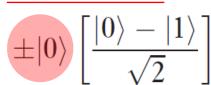
$$|\psi_{3}\rangle = \pm \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{bmatrix}$$

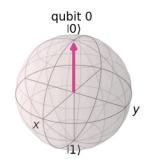
$$= \pm \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{bmatrix}$$

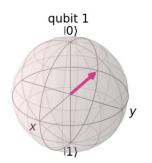
$$= \pm \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{bmatrix} = \pm \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{bmatrix}$$



Constant function

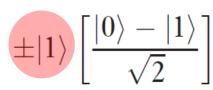


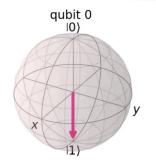


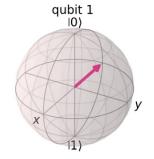


- ☐ Measurement is done
 - If it's 0: f(x) is constant
 - If it's 1: f(x) is balanced

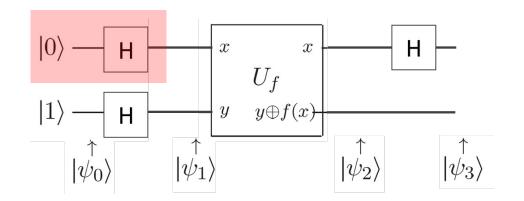
Balanced function

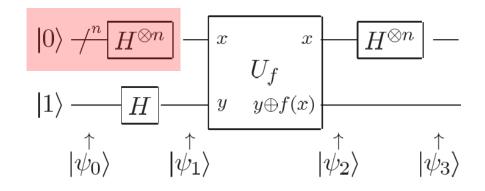






☐ The Deutsch-Jozsa algorithm is a generalized version of the Deutsch algorithm for multiple bits input.





- Deutsch algorithm
- Single-bit input

- Deutsch Jozsa algorithm
- Multiple-bits input

Summary

- ☐ Quantum mechanics is a mathematical framework or set of rules for the construction of physical theories.
- Quantum bit, its control through quantum gates and quantum circuits were explained as tools for the study of quantum mechanics.
- As an application scenario of quantum mechanics, Deutsch algorithm was introduced to demonstrate the superiority of quantum computing to classical computing.

Messages

- ☐ Presentation of the assignment 2 on July 31
 - We do NOT have a class on July 24!
 - 4 groups on July 31, and 3 groups on Aug 7
 - One person from each group will present the outcome of Assignment 2 in a
 5-minute presentation (+5 Q&A) using presentation slides.
 - Please send me the presentation slides by July 30.
 I will compile them all on my laptop.
 - What to include:
 - Clarifying contributions (including team member roles)
 - Visualizing and highlighting core findings/results concisely.
 - Challenges you had and how to deal with them (briefly)