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➢  Quantum Circuits 

➢  Quantum Algorithm: Deutsch Algorithm
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A brief introduction to Quantum Mechanics

A brief introduction to 
Quantum Mechanics
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A brief introduction to Quantum Mechanics

❑ Why Quantum mechanics?

- It was developed to explain 
physical phenomena that 
Newtonian mechanics could not 
adequately describe, such as 
the behavior of particles at 
atomic and subatomic scales.
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Double-slit experiment: Newton mechanics

object
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Electrons or any entities 
of exceedingly small size.

Interference pattern

Double-slit experiment: Quantum mechanics
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Double-slit experiment: Quantum mechanics

Interference pattern
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Wave

Interference pattern

Double-slit experiment: Quantum mechanics: wave-particle duality

?

Particle
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❑ What is Quantum mechanics? 

- a mathematical framework or set of rules for the construction of 
physical theories.

- a fundamental theory in physics that describes the physical 
phenomenon of nature at the scale of atoms and subatomic 
particles.

- Some are counter-intuitive even for experts

❑  What is Quantum computing?

- A technology that uses the principles of quantum mechanics to 
perform computations far better than classical computers.

A brief introduction to Quantum Mechanics
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Quantum Computing: Quantum Bit: QUBIT

Quantum Computing

Quantum Bit: QUBIT



Copyright ⓒ 2022 OSAKA University. All right reserved.11

Quantum Bit: QUBIT

❑ The quantum bit or qubit for short is its analogous concept to 
the bit in classical computing or information.

Classical Bit Quantum Bit: Qubit

0 1
|0⟩ |1⟩

❑ One bit has two states.
❑ One qubit has an infinite number of states.
❑ When observed, the state becomes either |0⟩ or |1⟩.
❑ Thus, before we observe, a qubit has both |0⟩ and |1⟩ 

states simultaneously, which is known as “super position”.
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Quantum Bit: QUBIT

❑ The quantum bit or qubit for short is its analogous concept to 
the bit in classical computing or information.

❑ A qubit state is represented as |ψ〉 = a|0〉 + b|1〉 , 

➢ Notation like “〈 | 〉” is called, bra-ket or Dirac notation,

➢ 〈 |: we read it as “bra”: row vector,

➢ | 〉: we read it as “ket”: column vector,

➢ |0〉 and |1〉: a two-dimensional vector [1, 0]T and [0, 1]T,

➢ a and b are complex numbers, |a|2 + |b|2 =1

➢ |ψ〉 = a|0〉 + b|1〉 = a
1
0

 + b
0
1

 = 
𝑎
𝑏

 = 
𝑝 + 𝑞𝑖
𝑣 + 𝑤𝑖
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Quantum Bit: QUBIT

❑ Inner product between the vectors |ϕ〉 and |ψ〉

❑ Represented as

❑ Its outcome is a scalar value

〈0||1〉 = 〈0|1〉 = [1,0]
0
1

 = 0

〈0|0〉 = 1

〈0|1〉 = 0

〈1|0〉 = 0

〈1|1〉 = 1 

〈ϕ|ψ〉
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Quantum Bit: QUBIT

❑ Inner product between |ϕ〉 and A |ψ〉: A is a matrix operator

❑ Represented as

❑ Its outcome is a scalar value

〈0|A|1〉 = [1,0]
𝑒11

𝑒21

𝑒12

𝑒22

0
1

 = [1,0]
𝑒12

𝑒22
 = e12

〈ϕ|A|ψ〉
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Quantum Bit: QUBIT

❑ Tensor product of the vectors |ϕ〉 and |ψ〉

❑ Represented as

❑ Its outcome is a vector 

|0〉|1〉 = |01〉 = 
1
0

0
1

 = 
1

0
1

0
0
1

=

0
1
0
0

|ϕ〉⊗|ψ〉 = |ϕ〉|ψ〉=|ϕψ〉

|00〉 = 

1
0
0
0

|01〉 = 

0
1
0
0

|10〉 = 

0
0
1
0

|11〉 = 

0
0
0
1
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Quantum Bit: QUBIT

❑ Tensor product of the |ϕ〉, k times 

❑ Represented as 

❑ Its outcome is a vector

|ϕ〉⊗k =|ϕ〉⊗|ϕ〉⊗...⊗|ϕ〉

|ϕ〉 = (|0〉+ |1〉)/ 2 

|ϕ〉 ⊗2 = ?

|ϕ〉=
1
0

+
0
1

/ 2

=
1
1

 / 2

|ϕ〉⊗2 = 
1
1

 / 2 ⊗
1
1

 / 2 

=(1/ 2 )2 1
1

 ⊗
1
1

=(1/2) 

1
1
1
1
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Quantum Bit: QUBIT

❑ Outer product of the vectors |ϕ〉 and〈ψ|

❑ Represented as 

❑ Its outcome is an operator matrix

|1〉〈1| = 
0
1

[0,1] =
0
0

0
1

|ϕ〉〈ψ| 

|0〉〈0| = 
1
0

0
0

|0〉〈1| = 
0
0

1
0

|1〉〈0| = 
0
1

0
0

|1〉〈1| = 
0
0

0
1
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Quantum Bit: its geometric representation 

|ψ〉 = α|0〉 + 
b|1〉

❑ A qubit state is initially described by 
four real parameters (p,q,v,w);

❑ A qubit state can be mapped onto a 
single point on the sphere known as 
“Bloch Sphere.”

1
0

 

0
1

 

α=p+qi, b=v+wi

4 parameters 
(p,q,v,w)

2 parameters 
(ϕ, 𝜃) 
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Quantum Bit control: single qubit gate

Quantum Bit control:

Single Qubit Gates
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❑ A single qubit gate is a function (matrix operator) which takes a 
single qubit state as an input and returns its value as an output.

❑ Some important single qubit gates

Quantum Bit control: single qubit gate

Pauli Transformation Gates Hadamard Gate
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Quantum Bit: its geometric representation 

X gate
Rotating around the X-axis

Y gate
Rotating around the Y-axis

Hadamard gate

X|0〉 Y|0〉 H|0〉 

Basis state

Basis state
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Quantum Bit: its geometric representation 

H Z|0〉 H H|0〉 X X|0〉 
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Quantum Bit control: multiple qubit gate

Quantum Bit control:

Gate for multiple Qubits
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❑ Controlled-NOT gate 

- In short, CNOT Gate or CX Gate.

- It has two input qubits; the control qubit and the target qubit.

- If the control bit is 0, the target bit does not change. 

- If the control bit is 1, the target bit is flipped.

Quantum Bit control: multiple qubit gate

Control qubit

Target qubit

Addition modulo two: remainder after 
diving the summation of A and B by two

❖ Addition modulo two: ⊕ 
- 0⊕0 => 0 so 0%2 = 0
- 0⊕1 => 1 so 1%2 = 1
- 1⊕0 => 1 so 1%2 = 1
- 1⊕1 => 2 so 2%2 = 0

| A 〉| B 〉
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Quantum Bit control: multiple qubit gate

❑ One important thing you need to remember is

- There are many interesting qubit gates however CNOT gate and 
single qubit gates are the prototypes for all other gates.

- Any multiple qubit logic gate may be composed from CNOT 
gate and single qubit gates.
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Quantum Circuits

Quantum Circuits
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Quantum Circuits

❑ A quantum circuit is a sequence of quantum gates and 
measurements designed to perform a specific quantum computation 
or algorithm on qubits.

❑ The circuit is read from left-to-right. The state input to the circuit is 
usually the state consisting of all |0〉s unless otherwise noted.

Quantum circuit symbol for measurement
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Quantum Circuits: Bell state

❑ A quantum circuit for creating Bell state, also known as 
entanglement state.

❑ Entangled quantum state of two qubits says,

➢ Knowing the state of one qubit automatically reveals the state 
of the other qubit regardless of the geographical locations of 
the two qubits.

❑ Bell state is created by Hadamard Gate followed by CNOT gate.
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Quantum Circuits: Bell state

|0〉

|0〉

①

② CNOT Gate:

 1/ 2 |00〉 + 1/ 2 |11〉 

① Hadamard Gate: 

creating an equal superposition                   
of the two basis states.

(H|0〉)⊗|0〉 = 1/ 2 (|0〉 + |1〉 ) ⊗ |0〉

                         = 1/ 2 (|00〉 + |10〉 ) 
Control bit 0 : not changing

Control bit 1 : changing 0 to 1

②

Control bit
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Quantum Circuits: Bell state

|0〉

|0〉

(a) (b) (c)

(a) (b) (c)
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Quantum Circuits: Bell state: entanglement

https://www.nature.com/collections/aegdeibjfi

❑ When the quantum states of two particles (e.g. photons) cannot be   
considered independently, we refer to quantum entanglement.

❑ In the case of two entangled particles, for example, this means that a 
measurement of one particle collapses not only its wave-function (and 
therefore determines its state), but also that of its twin.
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Quantum Algorithm

Quantum Algorithm

Deutsch algorithm
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Quantum Algorithm: Deutsch’s algorithm

❑ Given a binary function f(x), tell me whether it is either

- Constant function: f(A) ==  f(B) or

- Balanced function: f(A)  !=  f(B)

❑ In a classic computing, it requires two evaluations to identify 
whether the function is constant or balanced function.

❑ In a quantum computing, it requires only one evaluation!

❑ One of the first examples which demonstrates a quantum 
algorithm is better than a classical algorithm.
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The worst case 

Series1 Series2

Quantum Algorithm: Deutsch’s algorithm

Constant 
function

Balanced 
function

f(000) = 0 f(000) = 0

f(001) = 0 f(001) = 0

f(010) = 0 f(010) = 0

f(011) = 0 f(011) = 0

f(100) = 0 f(100) = 1

f(101) = 0 f(101) = 1

f(110) = 0 f(110) = 1

f(111) = 0 f(111) = 1

2n-1

2n-1 +1

# of queries to verify  
if it is constant or 
balanced function.

Quantum algorithm
(one operation)

In the worst case, you 
need to make queries as 

many as this number

n: the number of input bits

Classic algorithm

❑ Assuming that the binary function takes (n=3) bits as 
input and it gives you one bit as output.

❑ In a classic computing, how many queries need to identify 
whether it is constant or balanced function?
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Quantum Algorithm: Deutsch’s algorithm

❑ Here we want to verify whether the function f(x) is constant or balanced function.

❑ First, the input state, |ψ0〉 = |01〉, is fed into the quantum circuit.

H

H

H
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Quantum Algorithm: Deutsch’s algorithm

H

H

H
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Quantum Algorithm: Deutsch’s algorithm

❑ Each of the qubit, |0〉 and |1〉, is sent through two Hadamard gates,

- Hadamard gate: creating an equal superposition of the two basis states

H

H

H

Hadamard Gate
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Quantum Algorithm: Deutsch’s algorithm

H

H

H
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Quantum Algorithm: Deutsch’s algorithm

❑ Oracle function (Uf)

- In ancient Greece, an oracle was a priest who made statements about   
future events or about the truth

- Then, an oracle function is similar in a way that we don’t know what the 
function produces given input value …

H

H

H
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Quantum Algorithm: Deutsch’s algorithm

❑ Input: 

❑ Output: 

       |ψ2⟩ = 1/2 [|0, 0⊕f(0)〉+|1, 0⊕f(1)〉-|0, 1⊕f(0)〉-|1, 1⊕f(1)〉] 

H

H

H

x y

= 1/2 [|00〉+|10〉-|01〉-|11〉]

Input

output
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Quantum Algorithm: Deutsch’s algorithm

❑ Input: 

❑ Output: 

       |ψ2⟩ = 1/2 [|0, 0⊕f(0)〉+|1, 0⊕f(1)〉-|0, 1⊕f(0)〉-|1, 1⊕f(1)〉] 

H

H

H

x y

= 1/2 [|00〉+|10〉-|01〉-|11〉]

Input

output
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Quantum Algorithm: Deutsch’s algorithm

❑ Output: 

 |ψ2⟩ = 1/2 [|0, 0⊕f(0)〉+|1, 0⊕f(1)〉-|0, 1⊕f(0)〉-|1, 1⊕f(1)〉] 

Constant function: f(0) == f(1)

|ψ2〉= ±
|0⟩+|1⟩

2

|0⟩−|1⟩
2

 

❖ Addition modulo two: ⊕ 
- 0⊕0 => 0 so 0%2 = 0
- 0⊕1 => 1 so 1%2 = 1
- 1⊕0 => 1 so 1%2 = 1
- 1⊕1 => 2 so 2%2 = 0

= 1/2 [|0, f(0)〉+|1, f(1)〉-|0, f(0)〉-|1, f(1)〉]

= 1/2 [|0, f(0)〉+|1, f(0)〉-|0, f(0)〉-|1, f(0)]

= 1/2 [(|0〉+|1〉)(f(0)- f(0) ) ]

= ± 1/2 [(|0〉+|1〉)(|0〉-|1〉)]  

=±
|0⟩+|1⟩

2

|0⟩−|1⟩
2
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Quantum Algorithm: Deutsch’s algorithm

Constant function: f(0) == f(1)

|ψ2〉= ±
|0⟩+|1⟩

2

|0⟩−|1⟩
2

 

H

H

H
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Quantum Algorithm: Deutsch’s algorithm

Balanced function: f(0) != f(1) 

There are two cases;
1) f(0) = |0〉, f(1) = |1〉
2) f(0) = |1〉, f(1) = |0〉,

Thus, (f(0)-f(1)) becomes ± (|0⟩−|1⟩)

❑ Output: 

 |ψ2⟩ = 1/2 [|0, 0⊕f(0)〉+|1, 0⊕f(1)〉-|0, 1⊕f(0)〉-|1, 1⊕f(1)〉] 

|ψ2〉= ±
|0⟩−|1⟩

2

|0⟩−|1⟩
2

 

❖ Addition modulo two: ⊕ 
- 0⊕0 => 0 so 0%2 = 0
- 0⊕1 => 1 so 1%2 = 1
- 1⊕0 => 1 so 1%2 = 1
- 1⊕1 => 2 so 2%2 = 0

= 1/2 [|0, f(0)〉+|1, f(1)〉-|0, f(0)〉-|1, f(1)〉]

= 1/2 [|0, f(0)〉+|1, f(1)〉-|0, f(1) 〉-|1, f(0)]

= 1/2 [(|0〉-|1〉)(f(0)- f(1) ) ]

= ± 1/2 [(|0〉-|1〉)(|0〉-|1〉)]  

=±
|0⟩−|1⟩

2

|0⟩−|1⟩
2
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Quantum Algorithm: Deutsch’s algorithm

H

H

H

|ψ2〉= ±
|0⟩−|1⟩

2

|0⟩−|1⟩
2

 

Balanced function: f(0) == f(1)
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Quantum Algorithm: Deutsch’s algorithm

|ψ2〉= ±
|0⟩+|1⟩

2

|0⟩−|1⟩
2

 |ψ2〉= ±
|0⟩−|1⟩

2

|0⟩−|1⟩
2

 

Balanced function: f(0) != f(1) Constant function: f(0) == f(1) 

H

H

H
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Quantum Algorithm: Deutsch’s algorithm

H

H

H

Balanced function: f(0) != f(1) 

|ψ2〉= ±
|0⟩−|1⟩

2

|0⟩−|1⟩
2

 

|ψ3〉= ±
1

2

1 1
1 −1

|0⟩−|1⟩
2

|0⟩−|1⟩
2

=±
0
1

|0⟩−|1⟩
2

 = ± |1⟩
|0⟩−|1⟩

2
 

=±
1

2

1 1
1 −1

1

2

1
−1

|0⟩−|1⟩
2

|ψ3〉= ±
1

2

1 1
1 −1

|0⟩+|1⟩
2

|0⟩−|1⟩
2

=±
1

2

1 1
1 −1

1

2

1
1

|0⟩−|1⟩
2

|ψ2〉= ±
|0⟩+|1⟩

2

|0⟩−|1⟩
2

 

Constant function: f(0) == f(1) 

=±
1
0

|0⟩−|1⟩
2

 = ± |0⟩
|0⟩−|1⟩

2
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Quantum Algorithm: Deutsch’s algorithm

H

H

H

Finally, we measure

Balanced function

Constant function

❑ Measurement is done
- If it’s 0: f(x) is constant
- If it’s 1: f(x) is balanced
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Quantum Algorithm: Deutsch-Jozsa algorithm

❖  Deutsch algorithm
- Single-bit input

❖  Deutsch Jozsa algorithm
- Multiple-bits input

❑ The Deutsch-Jozsa algorithm is a generalized version of 
the Deutsch algorithm for multiple bits input.
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Summary

❑ Quantum mechanics is a mathematical framework or set of rules for 
the construction of physical theories. 

❑ Quantum bit, its control through quantum gates and quantum 
circuits were explained as tools for the study of quantum mechanics.

❑ As an application scenario of quantum mechanics, Deutsch algorithm 
was introduced to demonstrate the superiority of quantum 
computing to classical computing.
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