

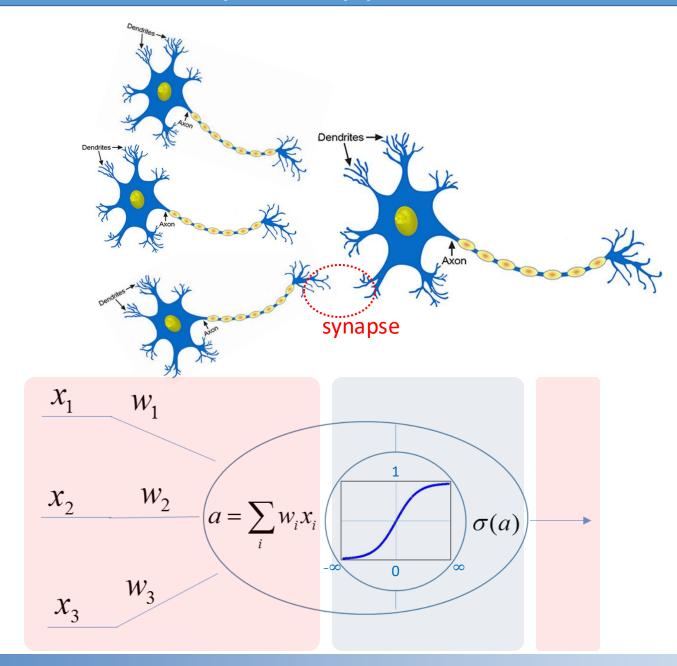
LECTURE 03 Machine Learning II: modern style machine learning

Dr. Suyong Eum

□ Neural Networks (NNs)

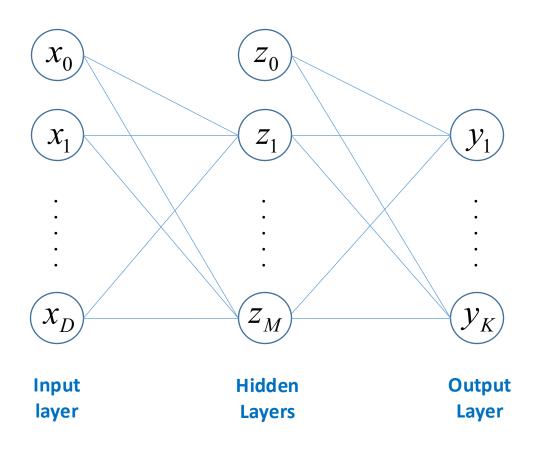
- Neural Network Architecture
- Computation in NNs: Forward and Backpropagation
- Activation Functions and Weight Initialization.

Neural networks: A bio-inspired approach



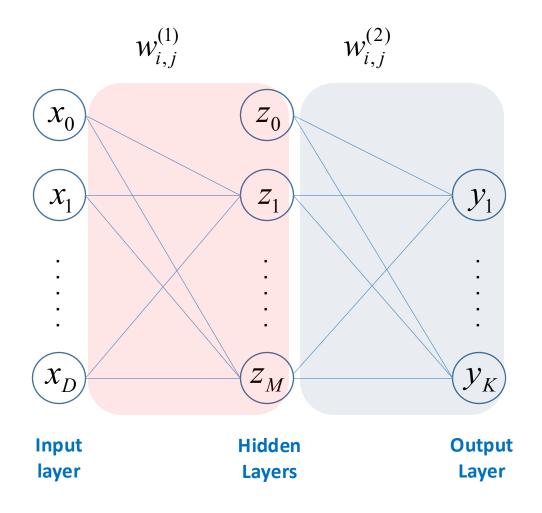
Copyright © 2022 OSAKA University. All right reserved.

Neural networks: Terminology in neural networks



How many layers it has?

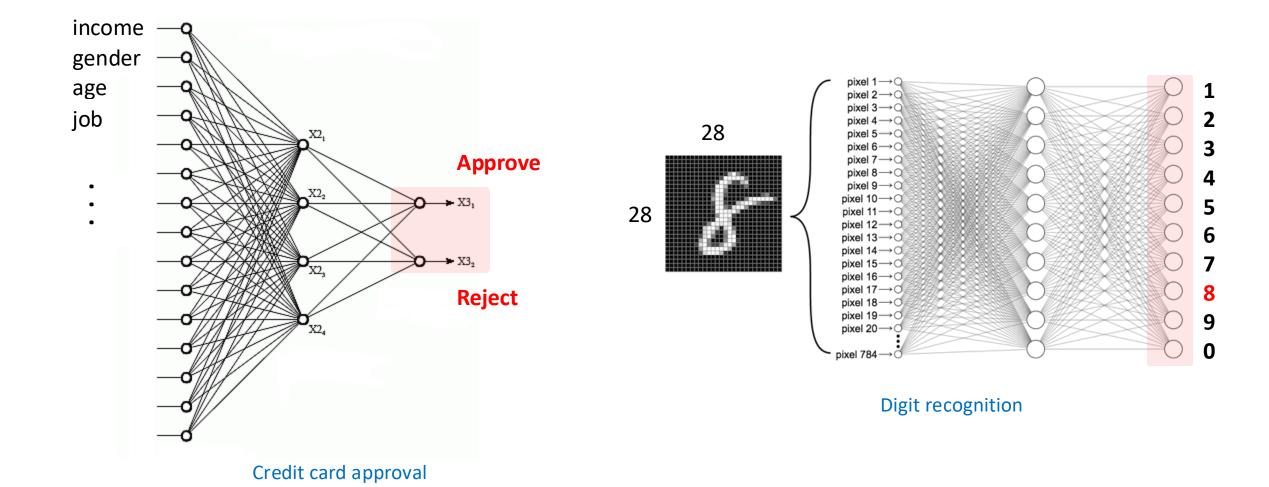
Neural networks: Terminology in neural networks



 $W_{i}^{(\ell)}$: weight on a link at layer (ℓ) between node i and j

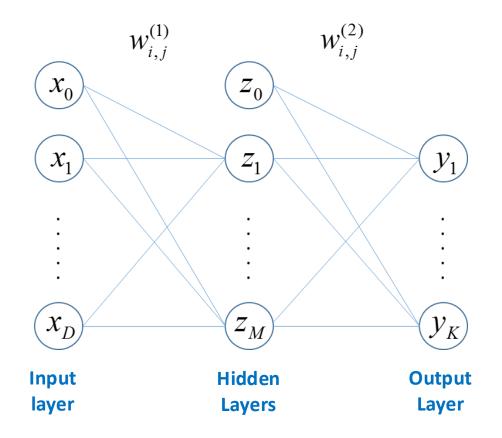
- In general, a standard L-layer neural network consists of
 - an input layer,
 - (L-1) hidden layers,
 - an output layer.

Neural networks: Example structures of neural networks

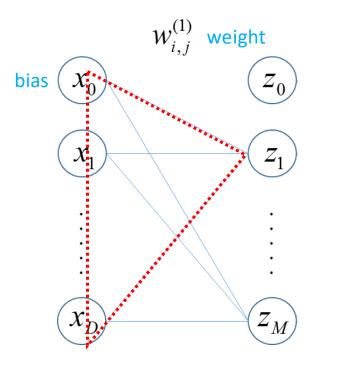


Copyright © 2022 OSAKA University. All right reserved.

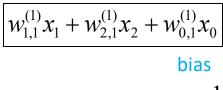
Neural networks: Model



Neural networks: Model - Bias and weight

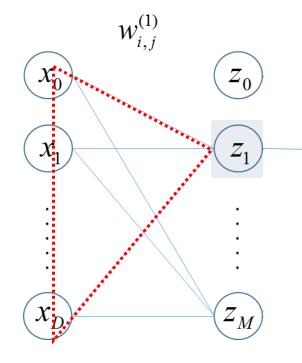


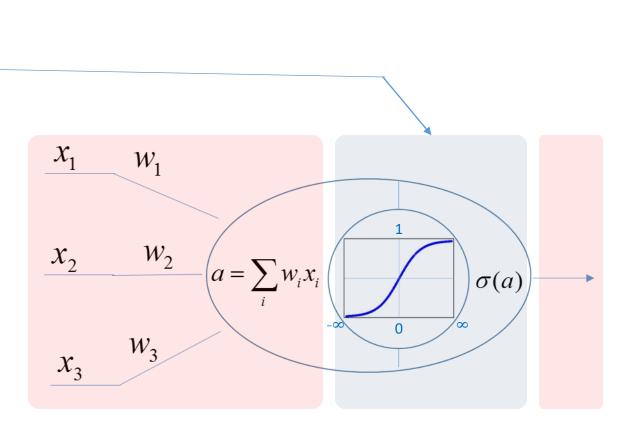
□ Fully connected vs Partially connected



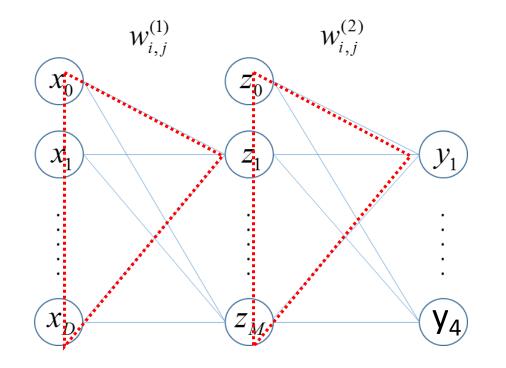
 $x_0 = 1$

Neural networks: Model - Activation function

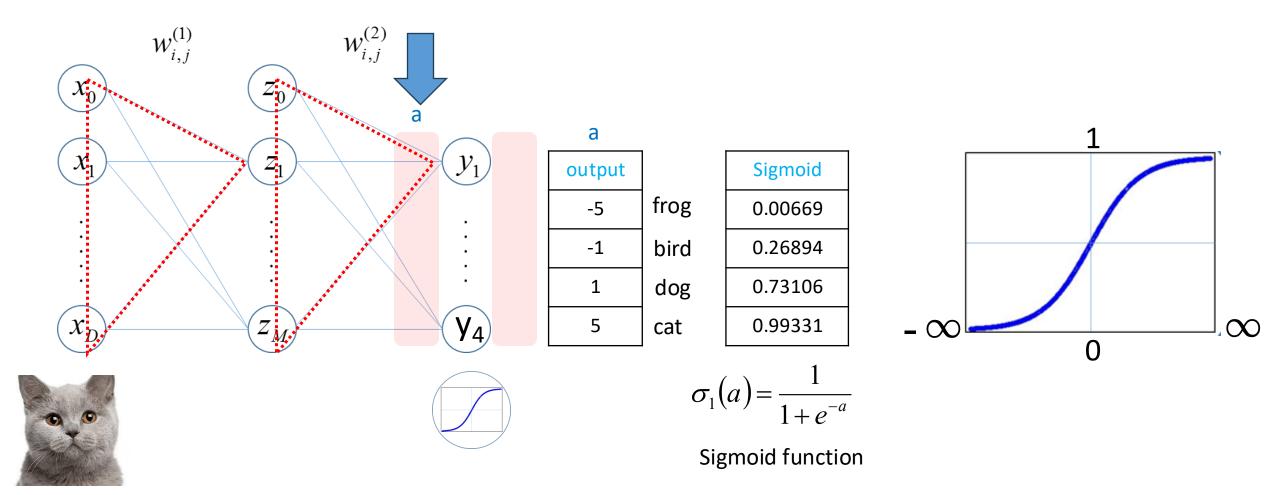




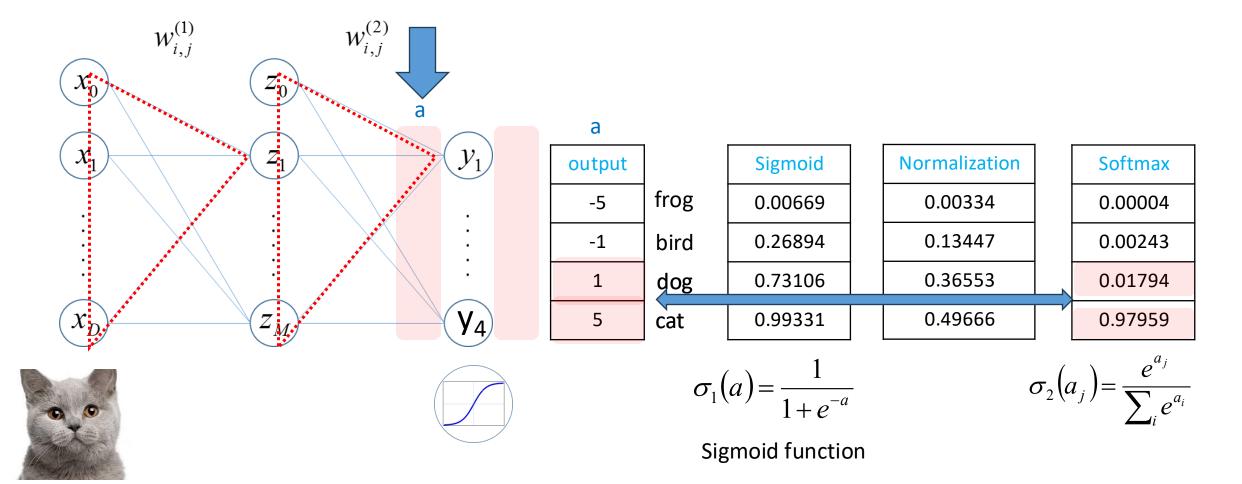
Neural networks: Model



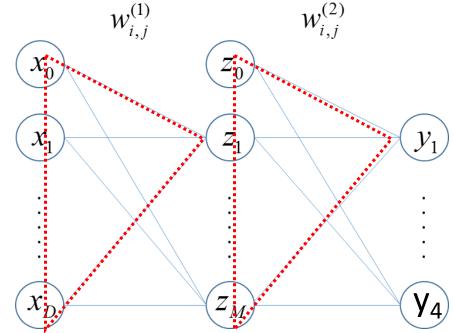
Neural networks: Model



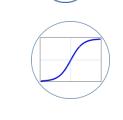
Neural networks: Softmax vs Normalization

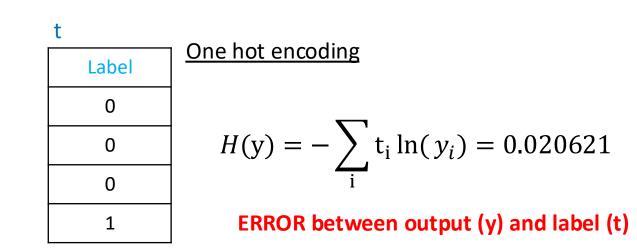


Neural networks: Cross entropy with Softmax

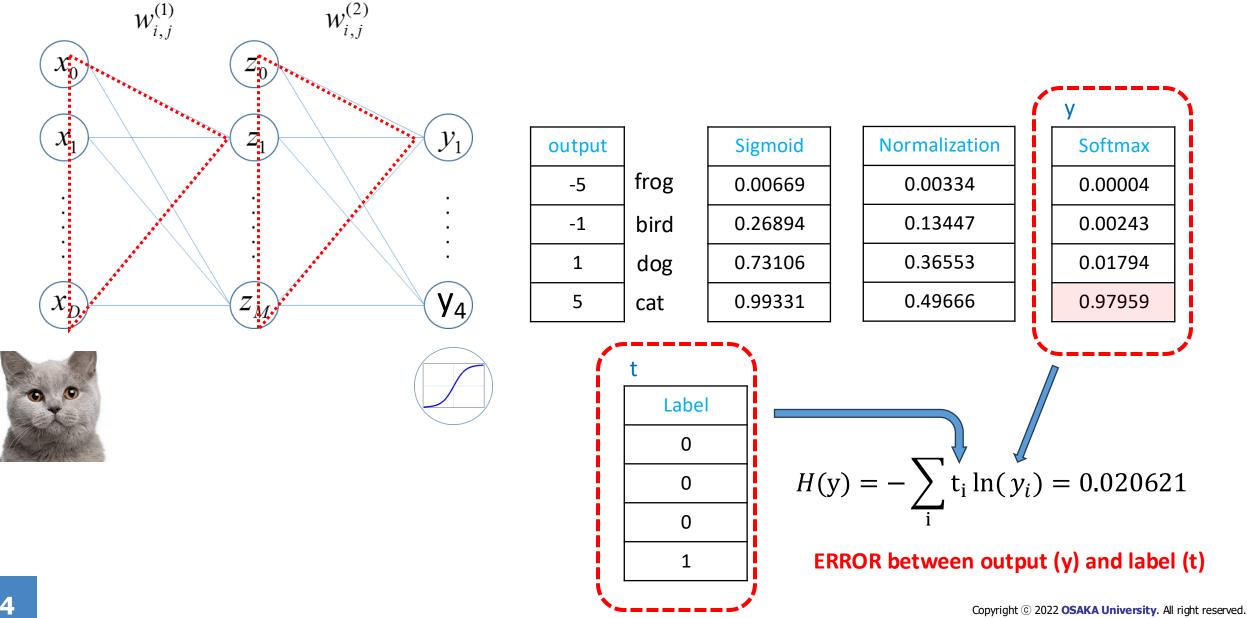


	_			У
output		Sigmoid	Normalization	Softmax
-5	frog	0.00669	0.00334	0.00004
-1	bird	0.26894	0.13447	0.00243
1	dog	0.73106	0.36553	0.01794
5	cat	0.99331	0.49666	0.97959

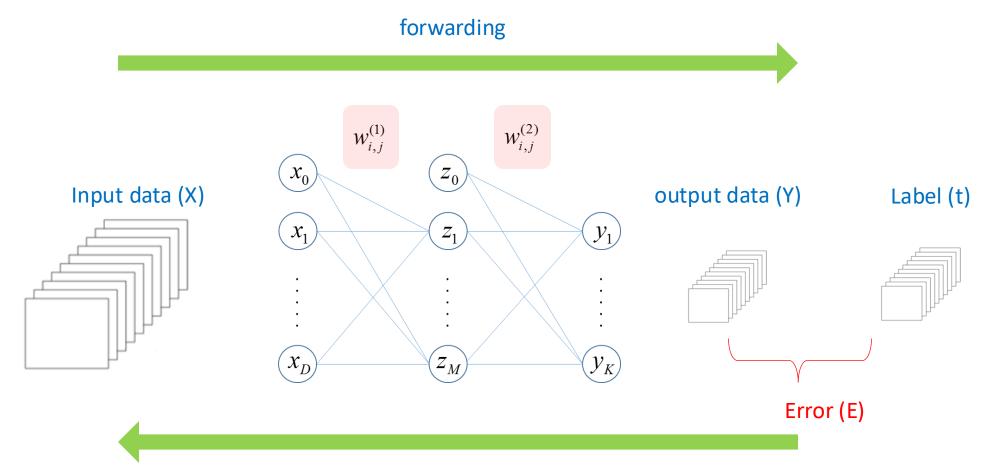




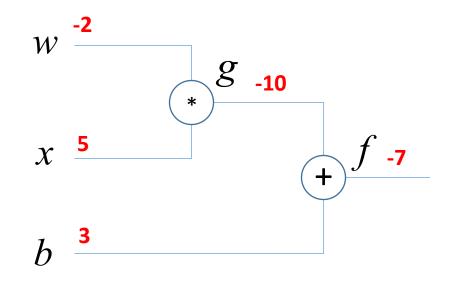
Neural networks: Cross entropy with Softmax

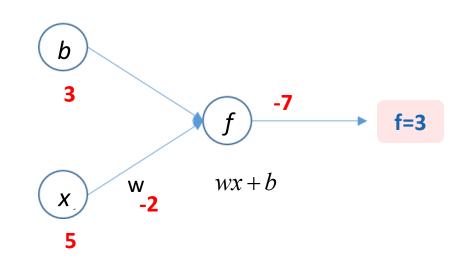


Overview of the operation



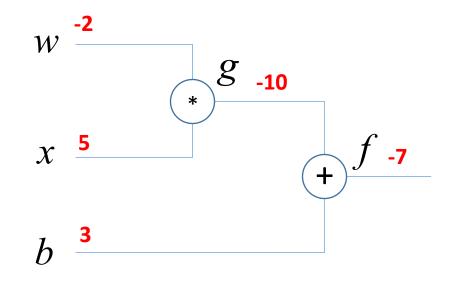
Backwarding to update weights





$$f = g + b$$

g = wx

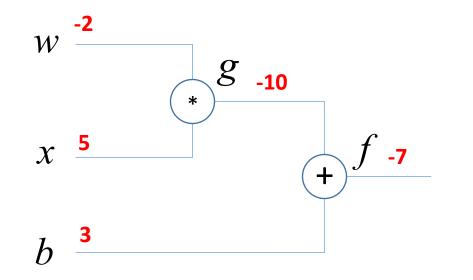


$$\frac{\partial f}{\partial w} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial w} = x = 5$$

When "w" is changed by 1 unit, it will change the value of "f" by 5 unit.

$$f = g + b$$

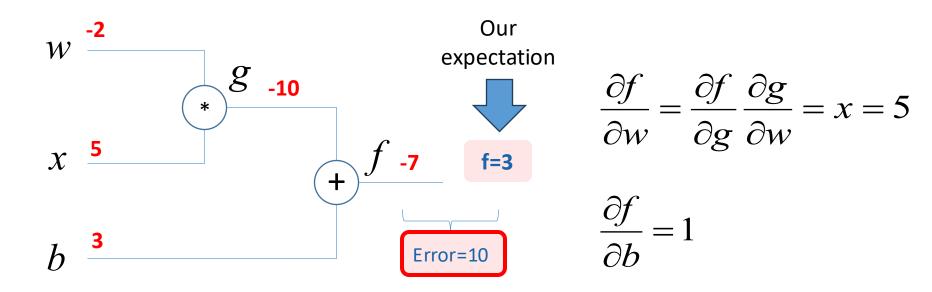
g = wx



$$\frac{\partial f}{\partial w} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial w} = x = 5$$
$$\frac{\partial f}{\partial b} = 1$$

$$f = g + b$$
$$g = wx$$

Copyright © 2022 OSAKA University. All right reserved.



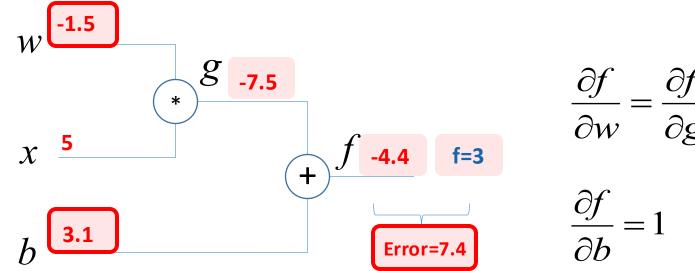
f = g + b

g = wx

$$W_{new} = W_{old} + \eta \, \frac{\partial f}{\partial w_i}$$

$$b_{new} = b_{old} + \eta \frac{\partial f}{\partial b}$$

Backpropagation: a toy example: $\eta = 0.1$



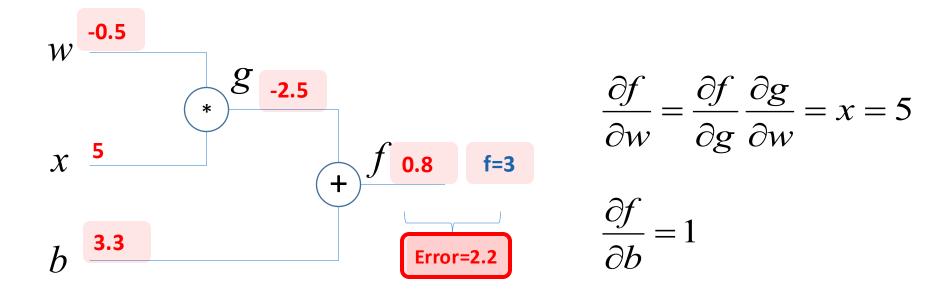
$$\frac{\partial f}{\partial w} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial w} = x = 5$$
$$\frac{\partial f}{\partial b} = 1$$

f = g + b

g = wx

$$W_{new} = W_{old} + \eta \frac{\partial f}{\partial w_i} \qquad b_{new} = b_{old} + \eta \frac{\partial f}{\partial b}$$
$$W_{new} = -2 + 0.1 \times 5 = -1.5 \qquad b_{new} = 3 + 0.1 \times 1 = 3.1$$

Backpropagation: a toy example: $\eta = 0.3$

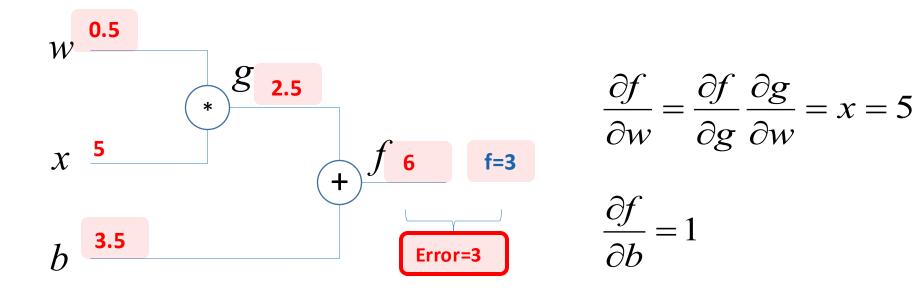


f = g + b

g = wx

$$W_{new} = W_{old} + \eta \frac{\partial f}{\partial w_i} \qquad \qquad b_{new} = b_{old} + \eta \frac{\partial f}{\partial b}$$
$$W_{new} = -2 + 0.3 \times 5 = -0.5 \qquad b_{new} = 3 + 0.3 \times 1 = 3.3$$

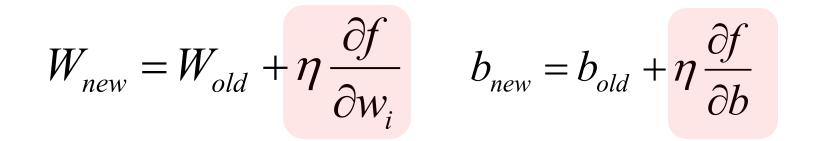
Backpropagation: a toy example: $\eta = 0.5$

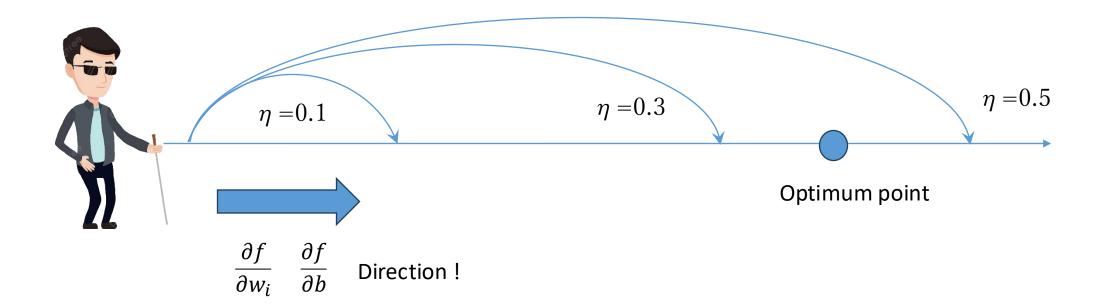


f = g + b

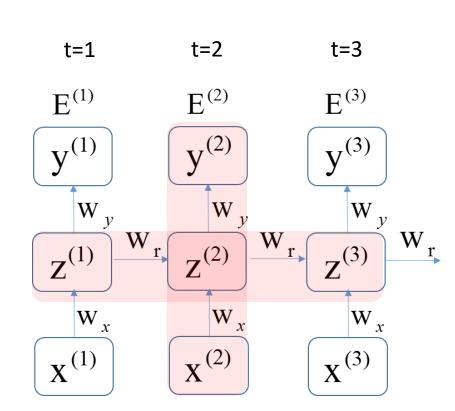
g = wx

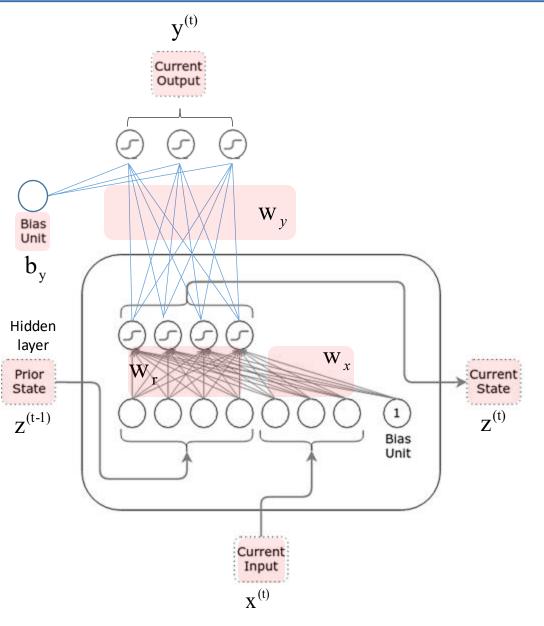
$$W_{new} = W_{old} + \eta \frac{\partial f}{\partial w_i} \qquad \qquad b_{new} = b_{old} + \eta \frac{\partial f}{\partial b}$$
$$W_{new} = -2 + 0.5 \times 5 = 0.5 \qquad \qquad b_{new} = 3 + 0.5 \times 1 = 3.5$$

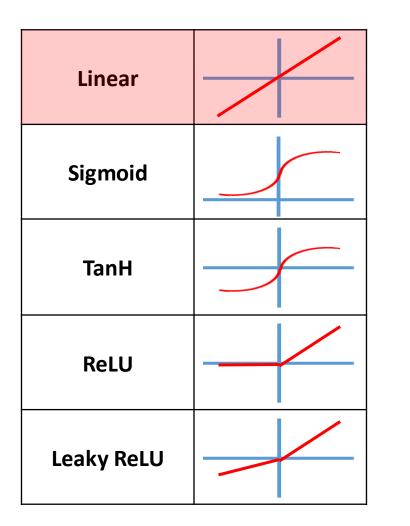




Another type of neural network: Vanilla RNN

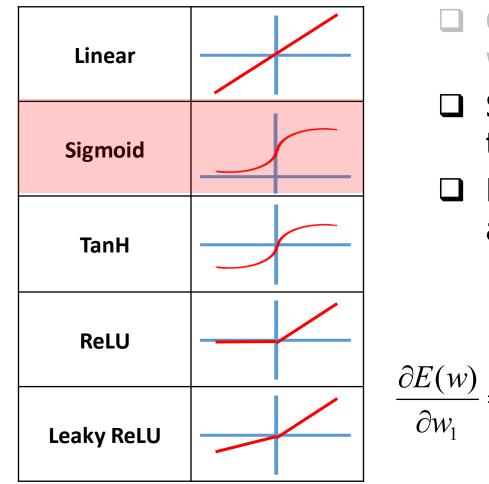




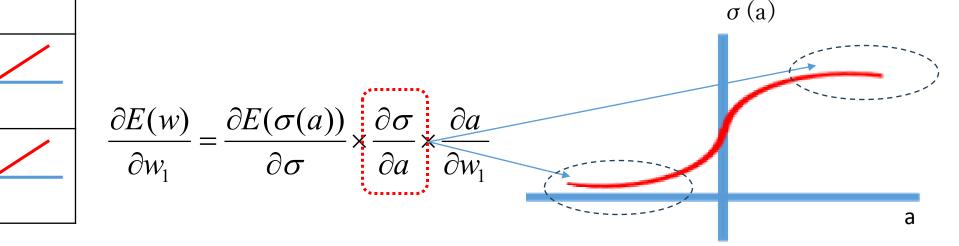


□ Cannot apply backpropagation to find how neural weights should change to reduce the error found.

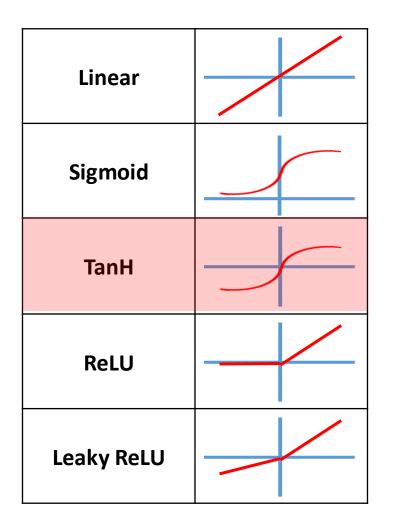
Cannot rescale the input, in other words, it gets exploded!



- □ Cannot apply backpropagation to find how neural weights should change to reduce the error found.
 - Saturated neuron stops the backpropagation due to the zero gradient at both ends.
- Non-zero centered: data coming into a neuron is always positive.

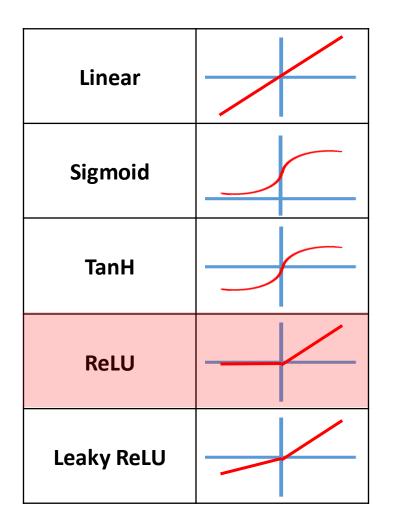


Known as "vanishing gradient problem"

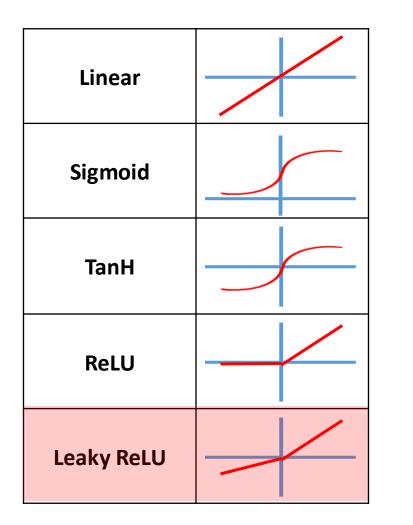


- □ Cannot apply backpropagation to find how neural weights should change to reduce the error found.
- Saturated neuron stops the backpropagation due to the zero gradient at both ends.
- Non-zero centered: data coming into a neuron is always positive.
- Zero centered... but the computation of exp() is expensive.

$$f(x) = rac{1-e^{-2x}}{1+e^{-2x}}$$



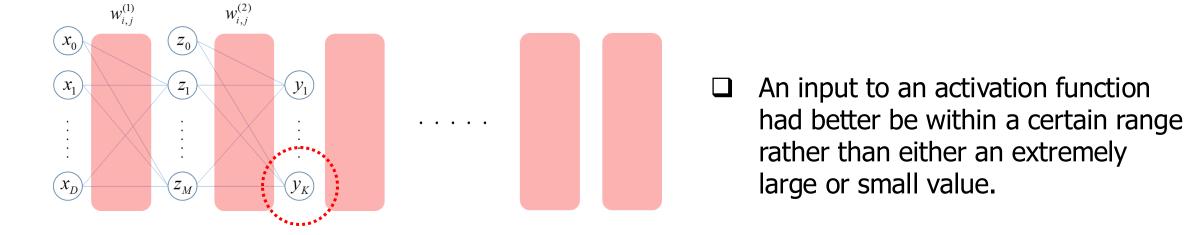
- □ Cannot apply backpropagation to find how neural weights should change to reduce the error found.
- Saturated neuron stops the backpropagation due to the zero gradient at both ends.
- Non-zero centered: data coming into a neuron is always positive.
- □ Zero centered... but the computation of exp() is expensive.
- ☐ The convergence speed with ReLU is 6 times faster than TanH [1]

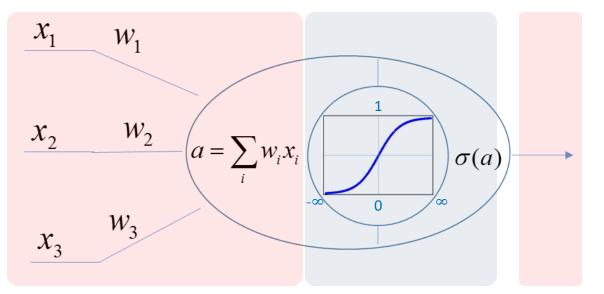


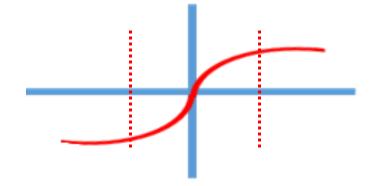
- □ Cannot apply backpropagation to find how neural weights should change to reduce the error found.
- Saturated neuron stops the backpropagation due to the zero gradient at both ends.
- Non-zero centered: data coming into a neuron is always positive.
- Zero centered... but the computation of exp() is expensive.
- ☐ The convergence speed with ReLU is 6 times faster than TanH [1]
- □ Zero centered and fast convergence ...

Neural networks: Weight initialization

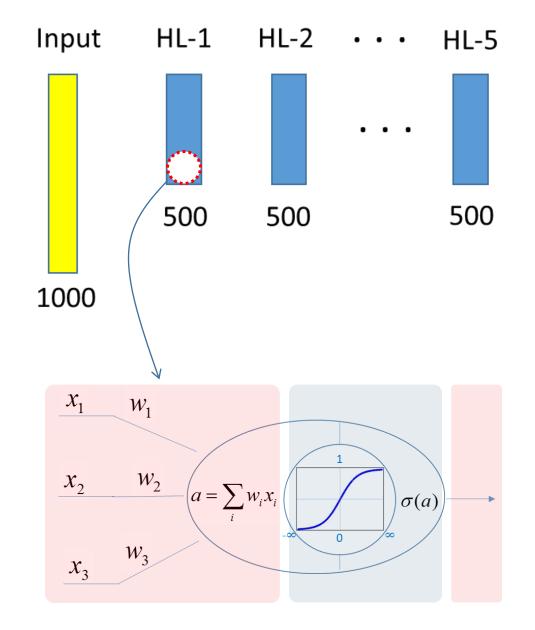
□ How do we set the weight of each link initially?







- A neural network is created as shown in the right, e.g., with 5 layers.
 - Each of the 1000 inputs is drawn from N(0, 1) and goes through the 5 hidden layers,
 - Then, the outputs of each hidden layer, e.g., after activation function, are plotted.



Tanh

How about random setting?

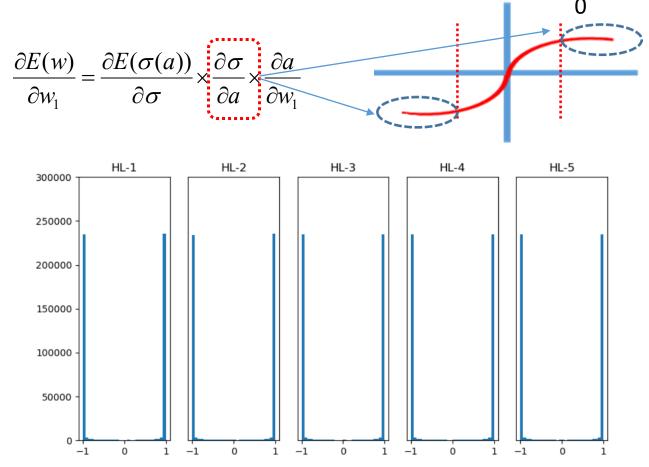
- N (mean=0, std=1)
- □ Random setting with smaller std?
 - N (mean=0, std=0.01)
- □ How about <u>Xavier</u> initialization?

- N (mean=0, std=
$$\sqrt{\frac{2}{fan in+fan out}}$$
)

☐ How about <u>He</u> initialization?

- N (mean=0, std=
$$\sqrt{\frac{4}{fan in+fan out}}$$

- The output values of the activation functions, tanh(), in each hidden layer are mostly distributed at -1 and 1
- Vanishing gradient problem



Tanh

☐ How about random setting?

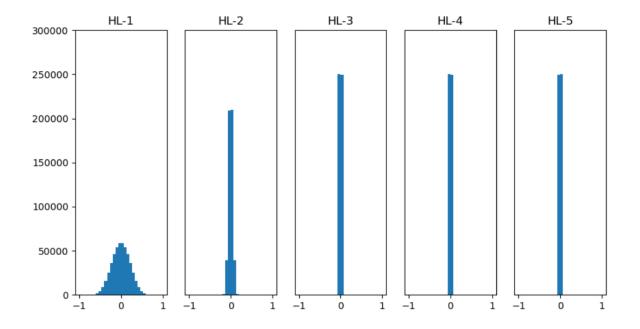
- N (mean=0, std=1)
- Random setting with smaller std? Tanh
 N (mean=0, std=0.01)
- □ How about <u>Xavier</u> initialization?

- N (mean=0, std=
$$\sqrt{\frac{2}{fan in+fan out}}$$
)

☐ How about <u>He</u> initialization?

- N (mean=0, std=
$$\sqrt{\frac{4}{fan in+fan out}}$$

- It solves the vanishing gradient problem but each weight tends to have same value,
- □ which implies some learning problem.



 $\label{eq:copyright} \textcircled{Copyright} \hline{Copyright} \hline \hline{Copyright} \hline \hline{Copyright} \hline \hline{Copyright} \hline \hline{Copyright} \hline \hline Copyright \hline \hline Copyright$

Tanh

☐ How about random setting?

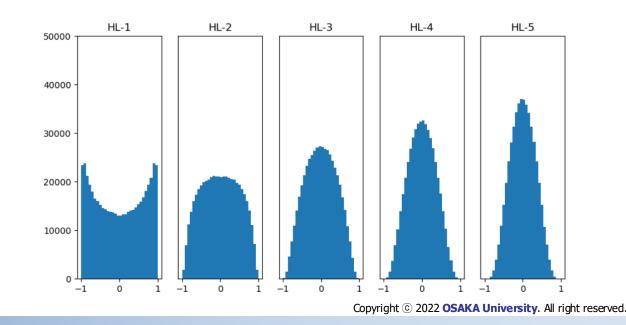
- N (mean=0, std=1)
- □ Random setting with smaller std? Tanh
 - N (mean=0, std=0.01)

□ How about Xavier initialization? Tanh
- N (mean=0, std=
$$\sqrt{\frac{2}{fan in+fan out}}$$
)

☐ How about <u>He</u> initialization?

- N (mean=0, std=
$$\sqrt{\frac{4}{fan in+fan out}}$$

- If S-curve function, e.g., sigmoid or tanh, is used as an activation function, Xavier is a way to initialize weight
- Solving the vanishing gradient and learning issue shown previously, e.g., well distributed
- STD is a function of the number of neurons in each hidden layer



☐ How about random setting?

Tanh

Relu

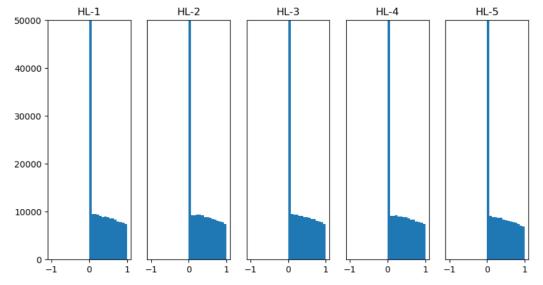
- N (mean=0, std=1)
- □ Random setting with smaller std? Tanh
 - N (mean=0, std=0.01)
- How about <u>Xavier</u> initialization? Tanh

- N (mean=0, std=
$$\sqrt{\frac{2}{fan in+fan out}}$$
)

☐ How about <u>He</u> initialization?

• N (mean=0, std=
$$\sqrt{\frac{4}{fan in+fan out}}$$

- □ As mentioned previously, Relu is 6 times faster than s-curve function.
- □ "He" is a choice for weight initialization when Relu is used as an activation function.



- A deep neural network is a class of neural networks inspired by the human brain's structure and functioning.
- We call a deep neural network as modern style machine learning because it can be operable now due to the abundant data, and powerful machines, etc.
- □ The backpropagation algorithm of neural networks was explained.
- Several design issues of neural networks such as activation functions, initial link weight setting, were explored.