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国際融合科学論/先端融合科学論

Dr. Suyong Eum

LECTURE 03

Machine Learning II: modern style machine learning
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Lecture Outline

❑ Neural Networks (NNs)

- Neural Network Architecture

- Computation in NNs: Forward and Backpropagation 

- Activation Functions and Weight Initialization.
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Neural networks: A bio-inspired approach
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Neural networks: Terminology in neural networks

How many layers it has?
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❑ In general, a standard L-layer 

neural network consists of 

- an input layer, 

- (L-1) hidden layers, 

- an output layer. 

Neural networks: Terminology in neural networks
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Neural networks: Example structures of neural networks
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Neural networks: Model
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Neural networks: Model - Bias and weight
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❑ Fully connected vs Partially connected
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Neural networks: Model - Activation function
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Neural networks: Model 
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Neural networks: Softmax vs Normalization 
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Neural networks: Cross entropy with Softmax

Sigmoid

0.00669

0.26894

0.73106

0.99331

output

-5

-1

1

5

Softmax

0.00004

0.00243

0.01794

0.97959

Normalization

0.00334

0.13447

0.36553

0.49666

𝐻(y) = − ෍

i

ti ln( 𝑦𝑖) = 0.020621

Label

0

0

0

1

cat

dog

bird

frog

y

t

ERROR between output (y) and label (t) 

y4

One hot encoding



14 Copyright ⓒ 2022 OSAKA University. All right reserved.14

Neural networks: Cross entropy with Softmax
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Overview of the operation

forwarding

Backwarding to update weights

Label (t)Input data (X) output data (Y)

Error (E)



16 Copyright ⓒ 2022 OSAKA University. All right reserved.16

g

f

*

+

w

x

b
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Backpropagation: a toy example
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Backpropagation: a toy example
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Backpropagation: a toy example
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Backpropagation: a toy example:η=0.1
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Backpropagation: a toy example: η=0.3
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Backpropagation: a toy example: η=0.5
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Backpropagation: a toy example
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Another type of neural network: Vanilla RNN
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Linear

Sigmoid

TanH

ReLU 

Leaky ReLU

❑ Cannot apply backpropagation to find how neural 
weights should change to reduce the error found.

Neural networks: Activation function

Cannot rescale the input, in other 
words, it gets exploded!
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Linear

Sigmoid

TanH

ReLU 

Leaky ReLU

❑ Cannot apply backpropagation to find how neural 
weights should change to reduce the error found.

❑ Saturated neuron stops the backpropagation due 
to the zero gradient at both ends. 

❑ Non-zero centered: data coming into a neuron is 

always positive.

Known as “vanishing gradient problem”

Neural networks: Activation function
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Linear

Sigmoid
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ReLU 

Leaky ReLU

❑ Cannot apply backpropagation to find how neural 
weights should change to reduce the error found.

❑ Saturated neuron stops the backpropagation due 
to the zero gradient at both ends. 

❑ Non-zero centered: data coming into a neuron is 

always positive.

❑ Zero centered… but the computation of exp() is 

expensive.

Neural networks: Activation function
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Linear

Sigmoid

TanH

ReLU 

Leaky ReLU

❑ Cannot apply backpropagation to find how neural 
weights should change to reduce the error found.

❑ Saturated neuron stops the backpropagation due 
to the zero gradient at both ends. 

❑ Non-zero centered: data coming into a neuron is 

always positive.

❑ Zero centered… but the computation of exp() is 

expensive.

❑ The convergence speed with ReLU is 6 times 
faster than TanH [1]

[1] ImageNet Classification with Deep Convolutional Neural Networks

Neural networks: Activation function
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Linear

Sigmoid

TanH

ReLU 

Leaky ReLU

❑ Cannot apply backpropagation to find how neural 
weights should change to reduce the error found.

❑ Saturated neuron stops the backpropagation due 
to the zero gradient at both ends. 

❑ Non-zero centered: data coming into a neuron is 

always positive.

❑ Zero centered… but the computation of exp() is 

expensive.

❑ The convergence speed with ReLU is 6 times 
faster than TanH [1]

❑ Zero centered and fast convergence …

[1] ImageNet Classification with Deep Convolutional Neural Networks

Neural networks: Activation function
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Neural networks: Weight initialization

❑ How do we set the weight of each link initially?
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❑ An input to an activation function 
had better be within a certain range 
rather than either an extremely 
large or small value.
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Neural networks: Weight initialization experiment

❑ A neural network is created as shown in the 
right, e.g., with 5 layers.

- Each of the 1000 inputs is drawn from   
N(0, 1) and goes through the 5 hidden 
layers,

- Then, the outputs of each hidden layer, 
e.g., after activation function, are plotted.
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Neural networks: Weight initialization experiment

❑ How about random setting?

- N (mean=0, std=1)

❑  Random setting with smaller std? 

- N (mean=0, std=0.01)

❑  How about Xavier initialization?

- N (mean=0, std=
2

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
 )

❑  How about He initialization?

- N (mean=0, std=
4

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
 )

Tanh
❑ The output values of the activation 

functions, tanh(), in each hidden layer are 
mostly distributed at -1 and 1

❑ Vanishing gradient problem
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Neural networks: Weight initialization experiment

❑ How about random setting?

- N (mean=0, std=1)

❑  Random setting with smaller std? 

- N (mean=0, std=0.01)

❑  How about Xavier initialization?

- N (mean=0, std=
2

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
 )

❑  How about He initialization?

- N (mean=0, std=
4

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
 )

Tanh

Tanh

❑ It solves the vanishing gradient problem 
but each weight tends to have same value, 

❑ which implies some learning problem. 
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Neural networks: Weight initialization experiment

❑ How about random setting?

- N (mean=0, std=1)

❑  Random setting with smaller std? 

- N (mean=0, std=0.01)

❑  How about Xavier initialization?

- N (mean=0, std=
2

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
 )

❑  How about He initialization?

- N (mean=0, std=
4

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
 )

Tanh

Tanh

Tanh

❑ If S-curve function, e.g., sigmoid or tanh,  
is used as an activation function, Xavier is a 
way to initialize weight

❑ Solving the vanishing gradient and learning 
issue shown previously, e.g., well 
distributed

❑ STD is a function of the number of neurons 
in each hidden layer
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Neural networks: Weight initialization experiment

❑ How about random setting?

- N (mean=0, std=1)

❑  Random setting with smaller std? 

- N (mean=0, std=0.01)

❑  How about Xavier initialization?

- N (mean=0, std=
2

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
 )

❑  How about He initialization?

- N (mean=0, std=
4

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
 )

Tanh

Tanh

Tanh

Relu

❑ As mentioned previously, Relu is 6 times 
faster than s-curve function.

❑ “He” is a choice for weight initialization 
when Relu is used as an activation function. 
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Summary

❑ A deep neural network is a class of neural networks inspired by 

the human brain’s structure and functioning.

❑ We call a deep neural network as modern style machine learning 

because it can be operable now due to the abundant data, and 

powerful machines, etc.

❑ The backpropagation algorithm of neural networks was explained.

❑ Several design issues of neural networks such as activation 

functions, initial link weight setting, were explored.
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