
1 Copyright ⓒ 2022 OSAKA University. All right reserved.1

国際融合科学論/先端融合科学論

Dr. Suyong Eum

LECTURE 03

Machine Learning II: modern style machine learning

2 Copyright ⓒ 2022 OSAKA University. All right reserved.2

Lecture Outline

❑ Neural Networks (NNs)

- Neural Network Architecture

- Computation in NNs: Forward and Backpropagation

- Activation Functions and Weight Initialization.

3 Copyright ⓒ 2022 OSAKA University. All right reserved.3

Neural networks: A bio-inspired approach

0

1

∞-∞

synapse

4 Copyright ⓒ 2022 OSAKA University. All right reserved.4

Input
layer

Hidden
Layers

Output
Layer

0x

1x

Dx

.

.

.

.

.

0z

1z

Mz

.

.

.

.

.

1y

Ky

.

.

.

.

.

Neural networks: Terminology in neural networks

How many layers it has?

5 Copyright ⓒ 2022 OSAKA University. All right reserved.5

)1(

, jiw
)2(

, jiw

0x

1x

Dx

.

.

.

.

.

0z

1z

Mz

.

.

.

.

.

1y

Ky

.

.

.

.

.

)(

,


jiw : weight on a link at layer () between node i and j 

❑ In general, a standard L-layer

neural network consists of

- an input layer,

- (L-1) hidden layers,

- an output layer.

Neural networks: Terminology in neural networks

Input
layer

Hidden
Layers

Output
Layer

6 Copyright ⓒ 2022 OSAKA University. All right reserved.6

28

28

Credit card approval

Digit recognition

income

gender
age

job

. . .

Neural networks: Example structures of neural networks

Approve

Reject

1
2
3
4
5
6
7
8
9
0

7 Copyright ⓒ 2022 OSAKA University. All right reserved.7

Input
layer

Hidden
Layers

Output
Layer

Neural networks: Model

8 Copyright ⓒ 2022 OSAKA University. All right reserved.8

Neural networks: Model - Bias and weight

0

)1(

1,02

)1(

1,21

)1(

1,1 xwxwxw ++

bias

bias

10 =x

weight

❑ Fully connected vs Partially connected

9 Copyright ⓒ 2022 OSAKA University. All right reserved.9

Neural networks: Model - Activation function

0

1

∞-∞

10 Copyright ⓒ 2022 OSAKA University. All right reserved.10

Neural networks: Model

y4

11 Copyright ⓒ 2022 OSAKA University. All right reserved.11

()
ae

a
−+

=
1

1
1

Sigmoid

0.00669

0.26894

0.73106

0.99331

output

-5

-1

1

5 cat

dog

bird

frog

a
a

Neural networks: Model

Sigmoid function

0

1

-∞ ∞y4

12 Copyright ⓒ 2022 OSAKA University. All right reserved.12

Neural networks: Softmax vs Normalization

()
ae

a
−+

=
1

1
1 ()


=

i

a

a

j
i

j

e

e
a2

Sigmoid

0.00669

0.26894

0.73106

0.99331

output

-5

-1

1

5

Softmax

0.00004

0.00243

0.01794

0.97959

Normalization

0.00334

0.13447

0.36553

0.49666cat

dog

bird

frog

a
a

Sigmoid function

cat

dog

y4

13 Copyright ⓒ 2022 OSAKA University. All right reserved.13

Neural networks: Cross entropy with Softmax

Sigmoid

0.00669

0.26894

0.73106

0.99331

output

-5

-1

1

5

Softmax

0.00004

0.00243

0.01794

0.97959

Normalization

0.00334

0.13447

0.36553

0.49666

𝐻(y) = − ෍

i

ti ln(𝑦𝑖) = 0.020621

Label

0

0

0

1

cat

dog

bird

frog

y

t

ERROR between output (y) and label (t)

y4

One hot encoding

14 Copyright ⓒ 2022 OSAKA University. All right reserved.14

Neural networks: Cross entropy with Softmax

Sigmoid

0.00669

0.26894

0.73106

0.99331

output

-5

-1

1

5

Softmax

0.00004

0.00243

0.01794

0.97959

Normalization

0.00334

0.13447

0.36553

0.49666

𝐻(y) = − ෍

i

ti ln(𝑦𝑖) = 0.020621

Label

0

0

0

1

cat

dog

bird

frog

y

t

ERROR between output (y) and label (t)

y4

15 Copyright ⓒ 2022 OSAKA University. All right reserved.15

Overview of the operation

forwarding

Backwarding to update weights

Label (t)Input data (X) output data (Y)

Error (E)

16 Copyright ⓒ 2022 OSAKA University. All right reserved.16

g

f

*

+

w

x

b

Backpropagation: a toy example

-2

5

3

-10

-7
w1

w

b

f

bwx +

f=3

x -2

5

3 -7

bgf +=

wxg =

17 Copyright ⓒ 2022 OSAKA University. All right reserved.17

Backpropagation: a toy example

5==







=




x

w

g

g

f

w

f

bgf +=

wxg =

When “w” is changed by 1 unit,
it will change the value of “f” by 5 unit.

g

f

*

+

w

x

b

-2

5

3

-10

-7

18 Copyright ⓒ 2022 OSAKA University. All right reserved.18

Backpropagation: a toy example

bgf +=

wxg =

1=




b

f

5==







=




x

w

g

g

f

w

fg

f

*

+

w

x

b

-2

5

3

-10

-7

19 Copyright ⓒ 2022 OSAKA University. All right reserved.19

Backpropagation: a toy example

bgf +=

wxg =

f=3

Error=10

❑ Assuming that the value of f should be “3”.
❑ How to update variables which you are interested?

i

oldnew
w

f
WW




+=  b

f
bb oldnew




+= 

Our
expectation

g

f

*

+

w

x

b

-2

5

3

-10

-7

1=




b

f

5==







=




x

w

g

g

f

w

f

20 Copyright ⓒ 2022 OSAKA University. All right reserved.20

g

f

w

x

b

Backpropagation: a toy example:η=0.1

-1.5

5

3.1

-7.5

bgf +=

wxg =

-4.4

❑ Assuming that the value of f should be “3”.
❑ How to update variables which you are interested?

Error=7.4

f=3

i

oldnew
w

f
WW




+= 

5.151.02 −=+−=newW

b

f
bb oldnew




+= 

1.311.03 =+=newb

1=




b

f

5==







=




x

w

g

g

f

w

f
*

+

21 Copyright ⓒ 2022 OSAKA University. All right reserved.21

g

f

w

x

b

Backpropagation: a toy example: η=0.3

-0.5

5

3.3

-2.5

bgf +=

wxg =

0.8

❑ Assuming that the value of f should be “3”.
❑ How to update variables which you are interested?

Error=2.2

f=3

i

oldnew
w

f
WW




+=  b

f
bb oldnew




+= 

𝑊𝑛𝑒𝑤 = −2 + 0.3 × 5 = −0.5 𝑏𝑛𝑒𝑤 = 3 + 0.3 × 1 = 3.3

1=




b

f

5==







=




x

w

g

g

f

w

f
*

+

22 Copyright ⓒ 2022 OSAKA University. All right reserved.22

g

f

w

x

b

Backpropagation: a toy example: η=0.5

0.5

5

3.5

2.5

bgf +=

wxg =

6

❑ Assuming that the value of f should be “3”.
❑ How to update variables which you are interested?

Error=3

f=3

i

oldnew
w

f
WW




+=  b

f
bb oldnew




+= 

𝑊𝑛𝑒𝑤 = −2 + 0.5 × 5 = 0.5 𝑏𝑛𝑒𝑤 = 3 + 0.5 × 1 = 3.5

1=




b

f

5==







=




x

w

g

g

f

w

f
*

+

23 Copyright ⓒ 2022 OSAKA University. All right reserved.23

Backpropagation: a toy example

Optimum point

i

oldnew
w

f
WW




+= 

b

f
bb oldnew




+= 

η=0.1 η=0.3 η=0.5

𝜕𝑓

𝜕𝑤𝑖

𝜕𝑓

𝜕𝑏
Direction !

24 Copyright ⓒ 2022 OSAKA University. All right reserved.24

Another type of neural network: Vanilla RNN

rw xw

yw

yb

(t)y

1)-(tz

Hidden
layer

(t)x

(t)z

t=1 t=2 t=3

25 Copyright ⓒ 2022 OSAKA University. All right reserved.25

Linear

Sigmoid

TanH

ReLU

Leaky ReLU

❑ Cannot apply backpropagation to find how neural
weights should change to reduce the error found.

Neural networks: Activation function

Cannot rescale the input, in other
words, it gets exploded!

26 Copyright ⓒ 2022 OSAKA University. All right reserved.26

Linear

Sigmoid

TanH

ReLU

Leaky ReLU

❑ Cannot apply backpropagation to find how neural
weights should change to reduce the error found.

❑ Saturated neuron stops the backpropagation due
to the zero gradient at both ends.

❑ Non-zero centered: data coming into a neuron is

always positive.

Known as “vanishing gradient problem”

Neural networks: Activation function

11

))(()(

w

a

a

aE

w

wE














=



 





a

σ(a)

27 Copyright ⓒ 2022 OSAKA University. All right reserved.27

Linear

Sigmoid

TanH

ReLU

Leaky ReLU

❑ Cannot apply backpropagation to find how neural
weights should change to reduce the error found.

❑ Saturated neuron stops the backpropagation due
to the zero gradient at both ends.

❑ Non-zero centered: data coming into a neuron is

always positive.

❑ Zero centered… but the computation of exp() is

expensive.

Neural networks: Activation function

28 Copyright ⓒ 2022 OSAKA University. All right reserved.28

Linear

Sigmoid

TanH

ReLU

Leaky ReLU

❑ Cannot apply backpropagation to find how neural
weights should change to reduce the error found.

❑ Saturated neuron stops the backpropagation due
to the zero gradient at both ends.

❑ Non-zero centered: data coming into a neuron is

always positive.

❑ Zero centered… but the computation of exp() is

expensive.

❑ The convergence speed with ReLU is 6 times
faster than TanH [1]

[1] ImageNet Classification with Deep Convolutional Neural Networks

Neural networks: Activation function

29 Copyright ⓒ 2022 OSAKA University. All right reserved.29

Linear

Sigmoid

TanH

ReLU

Leaky ReLU

❑ Cannot apply backpropagation to find how neural
weights should change to reduce the error found.

❑ Saturated neuron stops the backpropagation due
to the zero gradient at both ends.

❑ Non-zero centered: data coming into a neuron is

always positive.

❑ Zero centered… but the computation of exp() is

expensive.

❑ The convergence speed with ReLU is 6 times
faster than TanH [1]

❑ Zero centered and fast convergence …

[1] ImageNet Classification with Deep Convolutional Neural Networks

Neural networks: Activation function

30 Copyright ⓒ 2022 OSAKA University. All right reserved.30

Neural networks: Weight initialization

❑ How do we set the weight of each link initially?

0

1

∞-∞

❑ An input to an activation function
had better be within a certain range
rather than either an extremely
large or small value.

31 Copyright ⓒ 2022 OSAKA University. All right reserved.31

Neural networks: Weight initialization experiment

❑ A neural network is created as shown in the
right, e.g., with 5 layers.

- Each of the 1000 inputs is drawn from
N(0, 1) and goes through the 5 hidden
layers,

- Then, the outputs of each hidden layer,
e.g., after activation function, are plotted.

32 Copyright ⓒ 2022 OSAKA University. All right reserved.32

Neural networks: Weight initialization experiment

❑ How about random setting?

- N (mean=0, std=1)

❑ Random setting with smaller std?

- N (mean=0, std=0.01)

❑ How about Xavier initialization?

- N (mean=0, std=
2

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
)

❑ How about He initialization?

- N (mean=0, std=
4

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
)

Tanh
❑ The output values of the activation

functions, tanh(), in each hidden layer are
mostly distributed at -1 and 1

❑ Vanishing gradient problem

11

))(()(

w

a

a

aE

w

wE














=



 





0

33 Copyright ⓒ 2022 OSAKA University. All right reserved.33

Neural networks: Weight initialization experiment

❑ How about random setting?

- N (mean=0, std=1)

❑ Random setting with smaller std?

- N (mean=0, std=0.01)

❑ How about Xavier initialization?

- N (mean=0, std=
2

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
)

❑ How about He initialization?

- N (mean=0, std=
4

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
)

Tanh

Tanh

❑ It solves the vanishing gradient problem
but each weight tends to have same value,

❑ which implies some learning problem.

34 Copyright ⓒ 2022 OSAKA University. All right reserved.34

Neural networks: Weight initialization experiment

❑ How about random setting?

- N (mean=0, std=1)

❑ Random setting with smaller std?

- N (mean=0, std=0.01)

❑ How about Xavier initialization?

- N (mean=0, std=
2

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
)

❑ How about He initialization?

- N (mean=0, std=
4

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
)

Tanh

Tanh

Tanh

❑ If S-curve function, e.g., sigmoid or tanh,
is used as an activation function, Xavier is a
way to initialize weight

❑ Solving the vanishing gradient and learning
issue shown previously, e.g., well
distributed

❑ STD is a function of the number of neurons
in each hidden layer

35 Copyright ⓒ 2022 OSAKA University. All right reserved.35

Neural networks: Weight initialization experiment

❑ How about random setting?

- N (mean=0, std=1)

❑ Random setting with smaller std?

- N (mean=0, std=0.01)

❑ How about Xavier initialization?

- N (mean=0, std=
2

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
)

❑ How about He initialization?

- N (mean=0, std=
4

𝑓𝑎𝑛 𝑖𝑛+𝑓𝑎𝑛 𝑜𝑢𝑡
)

Tanh

Tanh

Tanh

Relu

❑ As mentioned previously, Relu is 6 times
faster than s-curve function.

❑ “He” is a choice for weight initialization
when Relu is used as an activation function.

36 Copyright ⓒ 2022 OSAKA University. All right reserved.36

Summary

❑ A deep neural network is a class of neural networks inspired by

the human brain’s structure and functioning.

❑ We call a deep neural network as modern style machine learning

because it can be operable now due to the abundant data, and

powerful machines, etc.

❑ The backpropagation algorithm of neural networks was explained.

❑ Several design issues of neural networks such as activation

functions, initial link weight setting, were explored.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

