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LECTURE 02

Machine Learning I: conventional machine learning
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Lecture Outline

1) Principal Component Analysis (PCA)

- Feature selections

- Dimension reduction

2) Support Vector Machine (SVM)

- Hard margin SVM: linear classification

- Kernel trick: nonlinear classification
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Principal Component Analysis (PCA)

Principal Component Analysis 
(PCA)
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In Wikipedia:

A statistical procedure that uses an orthogonal transformation 
to convert a set of observations of possibly correlated variables 
into a set of values of linearly uncorrelated variables called 
principal components.

Principal Component Analysis (PCA): definition
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PC1

PC2

Principal Component Analysis (PCA): intuition

❑ How to select principal components? 

- One that captures the largest variance of the data points

- Intuitively speaking, you can observe more data from the direction ① than 
any other direction, and then from the direction ②, you can observe the 

data with the least redundancy compared to the direction ① .

①

②
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How to find the principal components showing the largest variance?
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❑ Distance to data points from the mean along the axis of “v1”  

❑ Distance to data points from the mean along the axis of “v2”  
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How to find the principal components showing the largest variance?

1) Find the covariance matrix of data points.

2) Obtain the eigen values and vectors of the covariance 
matrix: eigen value decomposition.

3) Sort the eigen vectors in descending order in terms of their 
corresponding eigen values.

- an eigen vector with the largest eigen value becomes 
the first principal component.

1st principal 

component
2nd principal 

component 1st principal 
component

2nd principal 
component
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How to find the principal components showing the largest variance?

TT VVXX =

)VU()VU(XX TTTT =

T2VV=

Eigen decomposition

TVUX =

Singular Value Decomposition (SVD)
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❑  Actually, there is a more convenient way of doing it, which is called  
“Singular Value Decomposition” or SVD.
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How to find the principal components showing the largest variance?

TT VVXX = TVUX =

Singular Value Decomposition (SVD)Eigen decomposition

204721.4 2 =

2=

❑  Actually, there is a more convenient way of doing it, which is called  
“Singular Value Decomposition” or SVD.
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Now we know how to find the principal components 

❑ Principal Component Analysis (PCA) is nothing but finding 

principal components of a given data set,

- Principal components are the directions where you look at the data set, 
which provides the most information of the data set.

- They’re equivalent to eigen vectors which can be found by SVD or EVD.

- The eigen value corresponding to each eigen vector represents how widely 

the data set is spread along the direction which is perpendicular to the 
eigen vector.
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Dimension Reduction

❑ A data point is defined by several, let’s say, features,

❑ The number of features to define a data point is called the 

dimension of the data,

❑ High dimension data implies that it contains much information,

❑ Sometimes, we reduce its dimension, e.g., to visualize the data or 
to efficiently analyze them,

❑ PCA can reduce the dimension without losing relatively less 
information of the data.
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Dimension Reduction

❑ The previous example shows the case of two-dimensional data

❑ How can we reduce the two-dimensional data to one dimension?

❑ Yes, just project the data points onto the eigenvector space!









=

70711.0

70711.0
v1








−
=

70711.0

70711.0
v2

The first principal 
component

v1



13 Copyright ⓒ 2022 OSAKA University. All right reserved.13

1st Principal 
Component

VXX_rot =

Set the “v2” into zero -1' VX_rot_zeroX =

TVX_rot_zero =-1VX_rotX_rot_zero =

Dimension Reduction

v1
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Dimension Reduction: an example

❑ Let’s say, we have one image representing one data point as shown below,

❑ Then, we decide to present the data by all pixels which are 64 in this case, in 

other words, it is 64-dimensional data,

❑ What happens if we reduce its dimension to 2 dimension?
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Dimension Reduction: an example

❑ Let’s say, we have one image representing one data point as shown below,

❑ Then, we decide to present the data by all pixels which are 64 in this case, in 

other words, it is 64-dimensional data,

❑ What happens if we reduce its dimension to 2 dimension?

1st Principal 
Component

2nd Principal 
Component
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Dimension Reduction: an example

❑ Well, now we have a new set of data which have two dimension,            
so they can be presented in the two-dimensional space. Data visualization! 

❑ Also, we may be able to classify those data by drawing a line???

1st Principal 
Component

2nd Principal 
Component
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Support Vector Machine (SVM)

Support Vector Machine 
(SVM)
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Why Support Vector Machine?

❑ Most widely used classification approach (practical)

- Linearly separable data set

- Non-linearly separable data set

❑ Supported by well defined mathematical theories

- Geometry

- Optimization
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Which line is better to split two data sets?
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Decision 
boundary 

(Hyperplane)

Margin

Support 
Vectors

2x

1x

Support 
lines

Terminology used in SVM
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2x

1x

w
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|||| rbx

Margin distance
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Unit vector showing 
the direction only

Size of the vector
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Let’s say

❑ Let’s multiply wT and add w0 in both sides.

Margin distance
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We use it later … 
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❑ Finding a decision boundary which maximizes 
the margin.
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Problem formulation
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nytts nn  ,0)x(..

1|)y(x| c =

Let’s say❑ Do you remember?
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meaning that any data point is away 
from the decision boundary at least 1

Quadratic programming

Problem formulation
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❑ Let’s modify the optimization problem a bit.
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2x

1x

How about non-linearly separable case?

min
1

2
||w||2

𝑠. 𝑡. 𝑡(x𝑛)(W ∙ x𝑛 +𝑤0) ≥ 1, ∀𝑛



28 Copyright ⓒ 2022 OSAKA University. All right reserved.28

Kernel Trick

Kernel trick
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Lagrange method for an optimization problem with inequality constraints

❑ If b ≤ 0, the minima is 0 … so λ=0

❑ If b > 0, the minima is b2 … so x=b

❑ So, either λ or (x – b) becomes zero, in other words,

- λ(x-b) = 0 (complementary slackness)

❑ Since x ≥ b,  maximizing λ minimizes the objective value

- λ ≥ 0 

0

2x

b

0

2x

b

?
= 
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Convert the quadratic problem in SVM to Lagrange optimization problem
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Proof begins

Proof begins
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Convert the quadratic problem in SVM to Lagrange optimization problem
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❑ We would like to convert again the optimization problem 
above into another form, which provides same results.

- Because we want to solve the optimization problem in 
term of “lagrange multiplier (λn)”.
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Convert the quadratic problem in SVM to Lagrange optimization problem

Primal 
problem

Dual 
problem
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❑ We would like to convert again the optimization problem 
above into another form, which provides same results.

- Because we want to solve the optimization problem in 
term of “lagrange multiplier (λn)”.
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Convert the quadratic problem in SVM to Lagrange optimization problem

KKT conditions

1) Stationarity condition

2) Complementary slackness condition

3) Duality feasibility condition
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❑ We would like to convert again the optimization problem 
above into another form, which provides same results.

- Because we want to solve the optimization problem in 
term of “lagrange multiplier (λn)”.

Karush–Kuhn–Tucker 

conditions

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
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Dual problem of the quadratic problem: applying stationarity condition
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❖ The first one is called stationarity condition.

➢ when we partial differentiate the problem with respect to 
its parameter “w”, each of them should be zero.
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Dual problem of the quadratic problem: applying stationarity condition
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❖ The first one is called stationarity condition.

➢ Again, this time in terms of “w0”
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Dual problem of the quadratic problem: applying stationarity condition


=

=
N

n

nnn xt
1

w  
=

=
N

n

nnt
1

0

ww
2

1 T ( )
=

−+−
N

n

nnn wxt
1

0

T 1)(w=),ww,( 0 L


= =

−
N

n

m

T

nm

N

m

nmntt
1 1

xx=)(L 
=

+
N

n

n

1


= =

N

n

m

T

nm

N

m

nmntt
1 1

xx
2

1
 0

1

wt
N

n

nn
=

− 

0,
minmax
ww



38 Copyright ⓒ 2022 OSAKA University. All right reserved.38

Dual problem of the quadratic problem: applying stationarity condition
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“w” does not appear in the 
equation, and so we do not 
use this constraint anymore

Dual problem of the quadratic problem: applying stationarity condition
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❑ Let’s change it to a quadratic programming again.

❑ As mentioned previously, a quadratic programming problem 

needs to be minimized

Dual problem of the quadratic problem: applying stationarity condition
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Dual problem of the quadratic problem: applying stationarity condition
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Let’s summarize

❑ The solution from the quadratic programming is “lagrange multipliers”(λn)

❑ Many of the solutions (lagrange multipliers) are zero

❑ Complementary slackness (one of KKT conditions) should be satisfied.

❑ In other words, if λn are not zero, (tn(wtxn+w0)-1) should be zero 

      where corresponding data points should be support vectors.
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We obtained previously

❑ tn(wtxn+w0)=1
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Proof ends

Proof ends
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❑ If data xn are not linearly separable, what should we do?

Kernel trick
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❑ The idea of Kernel trick begins from here: to find the scalar values (the inner product of 

two vectors: zn and zm ) and so we can formulate the quadratic problem which can be 

linearly separable.

Kernel trick
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𝐾(x𝑛
𝑇 , x𝑚) m

T

nzz=

❑ Kernel function K() is a function which returns the scalar values (the inner product of two 

vectors: zn and zm in Z space) when the data points (xn and xm in X space) are given.

Kernel trick: Kernel function
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❑ With the Kernel function defined previously, we want to change the quadratic problem as follows:

- Because the Kernel function is a function of data points (xn and xm ) which we already have.

Kernel trick: Kernel function
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❑ With the Kernel function defined previously, we want to change the quadratic problem as follows:

- Because the Kernel function is a function of data points (xn and xm ) which we already have.

Kernel trick: Kernel function
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Summary

❑ PCA and SVM are probably the most representative conventional 

machine learning algorithms.

❑ PCA helps you to manipulate a set of data in a way that

- determining which features are important,

- reducing its dimension, so that the data can be processed or 
visualized more efficiently.

❑ SVM is a classification method founded on well defined 
mathematical framework, which can handle linear or nonlinear 

classification problems.
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