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Dr. Suyong Eum

LECTURE 02
Machine Learning I: conventional machine learning
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Lecture Outline

1) Principal Component Analysis (PCA)

- Feature selections

- Dimension reduction

2) Support Vector Machine (SVM)

- Hard margin SVM: linear classification

- Kernel trick: nonlinear classification
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Principal Component Analysis (PCA)

Principal Component Analysis 
(PCA)



4 Copyright ⓒ 2022 OSAKA University. All right reserved.4

In Wikipedia:

A statistical procedure that uses an orthogonal transformation 
to convert a set of observations of possibly correlated variables 
into a set of values of linearly uncorrelated variables called 
principal components.

Principal Component Analysis (PCA): definition
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PC1
PC2

Principal Component Analysis (PCA): intuition

 How to select principal components? 
- One that captures the largest variance of the data points
- Intuitively speaking, you can observe more data from the direction ① than 

any other direction, and then from the direction ②, you can observe the 
data with the least redundancy compared to the direction ① .

①

②
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How to find the principal components showing the largest variance?
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 Distance to data points from the mean along the axis of “v1”  

 Distance to data points from the mean along the axis of “v2”  
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How to find the principal components showing the largest variance?

1) Find the covariance matrix of data points.
2) Obtain the eigen values and vectors of the covariance 

matrix: eigen value decomposition.
3) Sort the eigen vectors in descending order in terms of their 

corresponding eigen values.
- an eigen vector with the largest eigen value becomes 

the first principal component.

1st principal 
component

2nd principal 
component 1st principal 

component
2nd principal 
component
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How to find the principal components showing the largest variance?
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Eigen decomposition

TVUX Σ=
Singular Value Decomposition (SVD)
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  Actually, there is a more convenient way of doing it, which is called  
“Singular Value Decomposition” or SVD.
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How to find the principal components showing the largest variance?

TT VVXX Λ= TVUX Σ=
Singular Value Decomposition (SVD)Eigen decomposition

204721.4 2 =

2Σ=Λ

  Actually, there is a more convenient way of doing it, which is called  
“Singular Value Decomposition” or SVD.
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Now we know how to find the principal components 

 Principal Component Analysis (PCA) is nothing but finding 
principal components of a given data set,

- Principal components are the directions where you look at the data set, 
which provides the most information of the data set.

- They’re equivalent to eigen vectors which can be found by SVD or EVD.
- The eigen value corresponding to each eigen vector represents how widely 

the data set is spread along the direction which is perpendicular to the 
eigen vector.
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Dimension Reduction

 A data point is defined by several, let’s say, features,
 The number of features to define a data point is called the 

dimension of the data,
 High dimension data implies that it contains much information,
 Sometimes, we reduce its dimension, e.g., to visualize the data or 

to efficiently analyze them,
 PCA can reduce the dimension without losing relatively less 

information of the data.
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Dimension Reduction

 The previous example shows the case of two-dimensional data
 How can we reduce the two-dimensional data to one dimension?
 Yes, just project the data points onto the eigenvector space!
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1st Principal 
Component

VXX_rot ⋅=

Set the “v2” into zero -1' VX_rot_zeroX ⋅=
TVX_rot_zero ⋅=-1VX_rotX_rot_zero ⋅=

Dimension Reduction

v1
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Dimension Reduction: an example

 Let’s say, we have one image representing one data point as shown below,
 Then, we decide to present the data by all pixels which are 64 in this case, in 

other words, it is 64-dimensional data,
 What happens if we reduce its dimension to 2 dimension?
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Dimension Reduction: an example

 Let’s say, we have one image representing one data point as shown below,
 Then, we decide to present the data by all pixels which are 64 in this case, in 

other words, it is 64-dimensional data,
 What happens if we reduce its dimension to 2 dimension?
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2nd Principal 
Component
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Dimension Reduction: an example

 Well, now we have a new set of data which have two dimension,            
so they can be presented in the two-dimensional space. Data visualization! 

 Also, we may be able to classify those data by drawing a line???

1st Principal 
Component

2nd Principal 
Component
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Support Vector Machine (SVM)

Support Vector Machine 
(SVM)
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Why Support Vector Machine?

 Most widely used classification approach (practical)
- Linearly separable data set
- Non-linearly separable data set

 Supported by well defined mathematical theories
- Geometry
- Optimization
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Which line is better to split two data sets?
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Decision 
boundary 

(Hyperplane)
Margin

Support 
Vectors

2x

1x

Support 
lines

Terminology used in SVM
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We use it later … 
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Let’s say Do you remember?
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meaning that any data point is away 
from the decision boundary at least 1

Quadratic programming

Problem formulation
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 Let’s modify the optimization problem a bit.
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2x

1x

How about non-linearly separable case?

min
1
2

||w||2

𝑠𝑠. 𝑡𝑡. 𝑡𝑡(x𝑛𝑛)(W � x𝑛𝑛 + 𝑤𝑤0) ≥ 1,∀𝑛𝑛



28 Copyright ⓒ 2022 OSAKA University. All right reserved.28

Kernel Trick

Kernel trick
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Lagrange method for an optimization problem with inequality constraints

 If b ≤ 0, the minima is 0 … so λ=0
 If b > 0, the minima is b2 … so x=b
 So, either λ or (x – b) becomes zero, in other words,

- λ(x-b) = 0 (complementary slackness)

 Since x ≥ b,  maximizing λ minimizes the objective value
- λ ≥ 0 
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Convert the quadratic problem in SVM to Lagrange optimization problem
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Proof begins

Proof begins
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 We would like to convert again the optimization problem 
above into another form, which provides same results.
- Because we want to solve the optimization problem in 

term of “lagrange multiplier (λn)”.
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Convert the quadratic problem in SVM to Lagrange optimization problem

Primal 
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Dual 
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 We would like to convert again the optimization problem 
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- Because we want to solve the optimization problem in 

term of “lagrange multiplier (λn)”.
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Convert the quadratic problem in SVM to Lagrange optimization problem

KKT conditions

1) Stationarity condition

2) Complementary slackness condition

3) Duality feasibility condition
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 We would like to convert again the optimization problem 
above into another form, which provides same results.
- Because we want to solve the optimization problem in 

term of “lagrange multiplier (λn)”.

Karush–Kuhn–Tucker 
conditions

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions


35 Copyright ⓒ 2022 OSAKA University. All right reserved.35

Dual problem of the quadratic problem: applying stationarity condition
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 The first one is called stationarity condition.

 when we partial differentiate the problem with respect to 
its parameter “w”, each of them should be zero.
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Dual problem of the quadratic problem: applying stationarity condition

∑
=

=
N

n
nnn xt

1
w λ ∑

=

=
N

n
nnt

1
0λ

ww
2
1 T ( )∑

=

−+−
N

n
nnn wxt

1
0

T 1)(wλ=),ww,( 0 λL
0,

minmax
wwλ

 The first one is called stationarity condition.

 Again, this time in terms of “w0”
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Dual problem of the quadratic problem: applying stationarity condition
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Dual problem of the quadratic problem: applying stationarity condition
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“w” does not appear in the 
equation, and so we do not 
use this constraint anymore

Dual problem of the quadratic problem: applying stationarity condition
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 Let’s change it to a quadratic programming again.
 As mentioned previously, a quadratic programming problem 

needs to be minimized

Dual problem of the quadratic problem: applying stationarity condition
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 Again, the optimization problem becomes a quadratic 
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Dual problem of the quadratic problem: applying stationarity condition
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Let’s summarize

 The solution from the quadratic programming is “lagrange multipliers”(λn)
 Many of the solutions (lagrange multipliers) are zero
 Complementary slackness (one of KKT conditions) should be satisfied.

 In other words, if λn are not zero, (tn(wtxn+w0)-1) should be zero 
      where corresponding data points should be support vectors.
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Proof ends

Proof ends



46 Copyright ⓒ 2022 OSAKA University. All right reserved.46

=)(λL ∑
=

−
N

n
n

1
λ∑∑

= =

N

n
m

T
nm

N

m
nmntt

1 1
xx

2
1 λλ

λ
min

,0.. ≥λts 0=λTt

ww
2
1min T

1)(w.. 0
T ≥+ wxtts nn

 If data xn are not linearly separable, what should we do?

Kernel trick
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 The idea of Kernel trick begins from here: to find the scalar values (the inner product of 
two vectors: zn and zm ) and so we can formulate the quadratic problem which can be 
linearly separable.

Kernel trick
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 Kernel function K() is a function which returns the scalar values (the inner product of two 
vectors: zn and zm in Z space) when the data points (xn and xm in X space) are given.

Kernel trick: Kernel function
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 With the Kernel function defined previously, we want to change the quadratic problem as follows:
- Because the Kernel function is a function of data points (xn and xm ) which we already have.

Kernel trick: Kernel function
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 With the Kernel function defined previously, we want to change the quadratic problem as follows:
- Because the Kernel function is a function of data points (xn and xm ) which we already have.

Kernel trick: Kernel function
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Polynomial kernel of degree 2
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Polynomial kernel of degree 2
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Gaussian Kernel: derivation (inner product in the infinite z space)

Mapping to infinite-dimension !
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1=α 10=α

100=α 1000=α

http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex8/ex8.html

Gaussian Kernel: parameter alpha
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Summary

 PCA and SVM are probably the most representative conventional 
machine learning algorithms.

 PCA helps you to manipulate a set of data in a way that
- determining which features are important,
- reducing its dimension, so that the data can be processed or 

visualized more efficiently.
 SVM is a classification method founded on well defined 

mathematical framework, which can handle linear or nonlinear 
classification problems.
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