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LECTURE 02
Machine Learning I: conventional machine learning
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Lecture Outline

1) Principal Component Analysis (PCA)

- Feature selections

- Dimension reduction

2) Support Vector Machine (SVM)

- Hard margin SVM: linear classification

- Kernel trick: nonlinear classification
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Principal Component Analysis (PCA)

Principal Component Analysis 
(PCA)
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In Wikipedia:

A statistical procedure that uses an orthogonal transformation 
to convert a set of observations of possibly correlated variables 
into a set of values of linearly uncorrelated variables called 
principal components.

Principal Component Analysis (PCA): definition
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PC1
PC2

Principal Component Analysis (PCA): intuition

 How to select principal components? 
- One that captures the largest variance of the data points
- Intuitively speaking, you can observe more data from the direction ① than 

any other direction, and then from the direction ②, you can observe the 
data with the least redundancy compared to the direction ① .

①

②
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How to find the principal components showing the largest variance?
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How to find the principal components showing the largest variance?

1) Find the covariance matrix of data points.
2) Obtain the eigen values and vectors of the covariance 

matrix: eigen value decomposition.
3) Sort the eigen vectors in descending order in terms of their 

corresponding eigen values.
- an eigen vector with the largest eigen value becomes 

the first principal component.

1st principal 
component

2nd principal 
component 1st principal 

component
2nd principal 
component
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How to find the principal components showing the largest variance?
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Eigen decomposition

TVUX Σ=
Singular Value Decomposition (SVD)
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  Actually, there is a more convenient way of doing it, which is called  
“Singular Value Decomposition” or SVD.
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How to find the principal components showing the largest variance?

TT VVXX Λ= TVUX Σ=
Singular Value Decomposition (SVD)Eigen decomposition

204721.4 2 =

2Σ=Λ

  Actually, there is a more convenient way of doing it, which is called  
“Singular Value Decomposition” or SVD.
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Now we know how to find the principal components 

 Principal Component Analysis (PCA) is nothing but finding 
principal components of a given data set,

- Principal components are the directions where you look at the data set, 
which provides the most information of the data set.

- They’re equivalent to eigen vectors which can be found by SVD or EVD.
- The eigen value corresponding to each eigen vector represents how widely 

the data set is spread along the direction which is perpendicular to the 
eigen vector.
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Dimension Reduction

 A data point is defined by several, let’s say, features,
 The number of features to define a data point is called the 

dimension of the data,
 High dimension data implies that it contains much information,
 Sometimes, we reduce its dimension, e.g., to visualize the data or 

to efficiently analyze them,
 PCA can reduce the dimension without losing relatively less 

information of the data.
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Dimension Reduction

 The previous example shows the case of two-dimensional data
 How can we reduce the two-dimensional data to one dimension?
 Yes, just project the data points onto the eigenvector space!
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1st Principal 
Component

VXX_rot ⋅=

Set the “v2” into zero -1' VX_rot_zeroX ⋅=
TVX_rot_zero ⋅=-1VX_rotX_rot_zero ⋅=

Dimension Reduction

v1
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Dimension Reduction: an example

 Let’s say, we have one image representing one data point as shown below,
 Then, we decide to present the data by all pixels which are 64 in this case, in 

other words, it is 64-dimensional data,
 What happens if we reduce its dimension to 2 dimension?
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Dimension Reduction: an example

 Let’s say, we have one image representing one data point as shown below,
 Then, we decide to present the data by all pixels which are 64 in this case, in 

other words, it is 64-dimensional data,
 What happens if we reduce its dimension to 2 dimension?

1st Principal 
Component

2nd Principal 
Component
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Dimension Reduction: an example

 Well, now we have a new set of data which have two dimension,            
so they can be presented in the two-dimensional space. Data visualization! 

 Also, we may be able to classify those data by drawing a line???

1st Principal 
Component

2nd Principal 
Component
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Support Vector Machine (SVM)

Support Vector Machine 
(SVM)
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Why Support Vector Machine?

 Most widely used classification approach (practical)
- Linearly separable data set
- Non-linearly separable data set

 Supported by well defined mathematical theories
- Geometry
- Optimization
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Which line is better to split two data sets?
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Decision 
boundary 

(Hyperplane)
Margin

Support 
Vectors

2x

1x

Support 
lines

Terminology used in SVM
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2x

1x
w
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|||| rbx

Margin distance
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Unit vector showing 
the direction only

Size of the vector

Margin
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We use it later … 
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 Finding a decision boundary which maximizes 
the margin.
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nytts nn ∀> ,0)x(..
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Let’s say Do you remember?
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T

meaning that any data point is away 
from the decision boundary at least 1

Quadratic programming

Problem formulation
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 Let’s modify the optimization problem a bit.
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2x

1x

How about non-linearly separable case?

min
1
2

||w||2

𝑠𝑠. 𝑡𝑡. 𝑡𝑡(x𝑛𝑛)(W � x𝑛𝑛 + 𝑤𝑤0) ≥ 1,∀𝑛𝑛
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Kernel Trick

Kernel trick
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Lagrange method for an optimization problem with inequality constraints

 If b ≤ 0, the minima is 0 … so λ=0
 If b > 0, the minima is b2 … so x=b
 So, either λ or (x – b) becomes zero, in other words,

- λ(x-b) = 0 (complementary slackness)

 Since x ≥ b,  maximizing λ minimizes the objective value
- λ ≥ 0 

0

2x

b

0

2x

b

?
= 
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Convert the quadratic problem in SVM to Lagrange optimization problem
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Proof begins

Proof begins
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 We would like to convert again the optimization problem 
above into another form, which provides same results.
- Because we want to solve the optimization problem in 

term of “lagrange multiplier (λn)”.
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Convert the quadratic problem in SVM to Lagrange optimization problem

Primal 
problem

Dual 
problem
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 We would like to convert again the optimization problem 
above into another form, which provides same results.
- Because we want to solve the optimization problem in 

term of “lagrange multiplier (λn)”.
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Convert the quadratic problem in SVM to Lagrange optimization problem

KKT conditions

1) Stationarity condition

2) Complementary slackness condition

3) Duality feasibility condition
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 We would like to convert again the optimization problem 
above into another form, which provides same results.
- Because we want to solve the optimization problem in 

term of “lagrange multiplier (λn)”.

Karush–Kuhn–Tucker 
conditions

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
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Dual problem of the quadratic problem: applying stationarity condition

0-w
1

==
∂
∂ ∑

=

N

n
nnn xt

w
L λ

∑
=

=
N

n
nnn xt

1
w λ

ww
2
1 T ( )∑

=

−+−
N

n
nnn wxt

1
0

T 1)(wλ=),ww,( 0 λL
0,

minmax
wwλ

 The first one is called stationarity condition.

 when we partial differentiate the problem with respect to 
its parameter “w”, each of them should be zero.
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Dual problem of the quadratic problem: applying stationarity condition
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 The first one is called stationarity condition.

 Again, this time in terms of “w0”
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Dual problem of the quadratic problem: applying stationarity condition
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Dual problem of the quadratic problem: applying stationarity condition
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“w” does not appear in the 
equation, and so we do not 
use this constraint anymore

Dual problem of the quadratic problem: applying stationarity condition
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 Let’s change it to a quadratic programming again.
 As mentioned previously, a quadratic programming problem 

needs to be minimized

Dual problem of the quadratic problem: applying stationarity condition
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 Again, the optimization problem becomes a quadratic 
programming problem.
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Dual problem of the quadratic problem: applying stationarity condition
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Let’s summarize

 The solution from the quadratic programming is “lagrange multipliers”(λn)
 Many of the solutions (lagrange multipliers) are zero
 Complementary slackness (one of KKT conditions) should be satisfied.

 In other words, if λn are not zero, (tn(wtxn+w0)-1) should be zero 
      where corresponding data points should be support vectors.
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Proof ends

Proof ends
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 If data xn are not linearly separable, what should we do?

Kernel trick
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 The idea of Kernel trick begins from here: to find the scalar values (the inner product of 
two vectors: zn and zm ) and so we can formulate the quadratic problem which can be 
linearly separable.

Kernel trick
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𝐾𝐾(x𝑛𝑛𝑇𝑇 , x𝑚𝑚) m
T
n zz=

 Kernel function K() is a function which returns the scalar values (the inner product of two 
vectors: zn and zm in Z space) when the data points (xn and xm in X space) are given.

Kernel trick: Kernel function
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 With the Kernel function defined previously, we want to change the quadratic problem as follows:
- Because the Kernel function is a function of data points (xn and xm ) which we already have.

Kernel trick: Kernel function
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 With the Kernel function defined previously, we want to change the quadratic problem as follows:
- Because the Kernel function is a function of data points (xn and xm ) which we already have.

Kernel trick: Kernel function
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Polynomial kernel of degree 2
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Polynomial kernel of degree 2
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Gaussian Kernel: derivation (inner product in the infinite z space)

Mapping to infinite-dimension !
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1=α 10=α

100=α 1000=α

http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex8/ex8.html

Gaussian Kernel: parameter alpha
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Summary

 PCA and SVM are probably the most representative conventional 
machine learning algorithms.

 PCA helps you to manipulate a set of data in a way that
- determining which features are important,
- reducing its dimension, so that the data can be processed or 

visualized more efficiently.
 SVM is a classification method founded on well defined 

mathematical framework, which can handle linear or nonlinear 
classification problems.
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