

LECTURE 02 Machine Learning I: conventional machine learning

Dr. Suyong Eum

1) Principal Component Analysis (PCA)

- Feature selections
- Dimension reduction
- 2) Support Vector Machine (SVM)
	- Hard margin SVM: linear classification
	- Kernel trick: nonlinear classification

Principal Component Analysis (PCA)

Principal Component Analysis (PCA): definition

A statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

In Wikipedia:

- How to select principal components?
	- One that captures the largest variance of the data points
	- Intuitively speaking, you can observe more data from the direction \mathcal{D} than any other direction, and then from the direction ②, you can observe the data with the least redundancy compared to the direction ① .

- 1) Find the covariance matrix of data points.
- 2) Obtain the eigen values and vectors of the covariance matrix: eigen value decomposition.
- 3) Sort the eigen vectors in descending order in terms of their corresponding eigen values.
	- an eigen vector with the largest eigen value becomes the first principal component.

Diagon 1 Matrix

0

0.80000

4.00000

 \Box Actually, there is a more convenient way of doing it, which is called "Singular Value Decomposition" or SVD.

 \Box Actually, there is a more convenient way of doing it, which is called "Singular Value Decomposition" or SVD.

Eigen decomposition and Singular Value Decomposition (SVD)

Now we know how to find the principal components

- Principal Component Analysis (PCA) is nothing but finding principal components of a given data set,
	- Principal components are the directions where you look at the data set, which provides the most information of the data set.
	- They're equivalent to eigen vectors which can be found by SVD or EVD.
	- The eigen value corresponding to each eigen vector represents how widely the data set is spread along the direction which is perpendicular to the eigen vector.

- A data point is defined by several, let's say, features,
- The number of features to define a data point is called the dimension of the data,
- High dimension data implies that it contains much information,
- \Box Sometimes, we reduce its dimension, e.g., to visualize the data or to efficiently analyze them,
- \Box PCA can reduce the dimension without losing relatively less information of the data.
- The previous example shows the case of two-dimensional data
- How can we reduce the two-dimensional data to one dimension?
- Yes, just project the data points onto the eigenvector space!

Dimension Reduction

Dimension Reduction

Dimension Reduction

- \Box Let's say, we have one image representing one data point as shown below,
- Then, we decide to present the data by all pixels which are 64 in this case, in other words, it is 64-dimensional data,
- What happens if we reduce its dimension to 2 dimension?

- \Box Let's say, we have one image representing one data point as shown below,
- Then, we decide to present the data by all pixels which are 64 in this case, in other words, it is 64-dimensional data,
- What happens if we reduce its dimension to 2 dimension?

8

8

- \Box Well, now we have a new set of data which have two dimension, so they can be presented in the two-dimensional space. Data visualization!
- Also, we may be able to classify those data by drawing a line???

Support Vector Machine (SVM)

Why Support Vector Machine?

- \Box Most widely used classification approach (practical)
	- Linearly separable data set
	- Non-linearly separable data set

- \Box Supported by well defined mathematical theories
	- Geometry
	- Optimization

Which line is better to split two data sets?

Terminology used in SVM

$$
\mathbf{x}^c = \mathbf{x}^b + ||r|| \frac{\mathbf{w}}{||\mathbf{w}||}
$$

 \parallel W \parallel

 $||r|| = \frac{1}{\sqrt{2\pi}}$

Let's multiply w^T and add $w₀$ in both sides.

|| w || w $\mathbf{w}^{\mathrm{T}}\mathbf{x}^c + w_0 = \mathbf{w}^{\mathrm{T}}\mathbf{x}^b + w_0 + \mathbf{w}^{\mathrm{T}} \parallel r \parallel$ T 0 $\int_{0}^{T} \mathbf{x}^{c} + w_{0} = \mathbf{w}^{T} \mathbf{x}^{b} + w_{0} + \mathbf{w}^{T} \parallel r$ $\| w \|$ $y(x^c) = w^T || r || \frac{w}{r}$ \parallel W \parallel $|| r || = \frac{y(x^{c})}{u}$ $r \parallel =$ Let's say

 $|y(x^c)|=1$

We use it later …

 \Box Finding a decision boundary which maximizes the margin.

$$
\max ||r|| = \frac{1}{||w||}
$$

s.t.

classified correctly.

$$
\begin{cases} t_n = +1, & y(\mathbf{x}_n) > 0 \\ t_n = -1, & y(\mathbf{x}_n) < 0 \end{cases}
$$

Problem formulation

 \Box Let's modify the optimization problem a bit.

Quadratic programming

How about non-linearly separable case?

Kernel Trick

Lagrange method for an optimization problem with inequality constraints

?

=

$$
\min_{x} \max_{\lambda} x^2 - \lambda(x - b)
$$

s.t. $\lambda \ge 0$

- \Box If $b \le 0$, the minima is 0 ... so $\lambda = 0$
- If $b > 0$, the minima is b^2 ... so $x=b$
- \Box So, either λ or $(x b)$ becomes zero, in other words,
	- $-\lambda(x-b) = 0$ (complementary slackness)
- \Box Since $x \ge b$, maximizing λ minimizes the objective value
	- $\lambda \geq 0$

$$
\min_{\mathbf{w}} \max_{\lambda} \frac{1}{2} \mathbf{w}^{T} \mathbf{w} - \sum_{n=1}^{n} \lambda_{n} (t_{n} (\mathbf{w}^{T} x_{n} + w_{0}) - 1) \ns.t. \quad \lambda_{n} \ge 0
$$

Proof begins

$$
\min_{\mathbf{w}} \max_{\lambda} \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{n=1}^n \lambda_n (t_n (\mathbf{w}^T x_n + w_0) - 1)
$$
\n
$$
S.t. \quad \lambda_n \ge 0
$$

 We would like to convert again the optimization problem above into another form, which provides same results.

- Because we want to solve the optimization problem in term of "lagrange multiplier (λ_n) ".

$$
\max_{\lambda} \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{n=1}^n \lambda_n (t_n(\mathbf{w}^T x_n + w_0) - 1)
$$

s.t. $\lambda_n \ge 0$

s.t. $\lambda_n \geq 0$ w 1 λ

Dual

proble

Primal

problem

$$
\min_{\mathbf{w}} \max_{\lambda} \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{n=1}^n \lambda_n (t_n(\mathbf{w}^T x_n + w_0) - 1)
$$

s.t. $\lambda_n \ge 0$

- We would like to convert again the optimization problem above into another form, which provides same results.
	- Because we want to solve the optimization problem in term of "lagrange multiplier (λ_n) ".

$$
\max_{\lambda} \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{n=1}^n \lambda_n (t_n(\mathbf{w}^T x_n + w_0) - 1)
$$

s.t. $\lambda_n \ge 0$

[Karush–Kuhn–Tucker](https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions) [conditions](https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions)

KKT conditions

 $\lambda_n \geq 0$

1) Stationarity condition

 $(t_n (W^{\mathrm{T}} x_n + w_0) - 1) = 0$ w $\mathbf{w}^T \mathbf{w}$ 2 1 w 2 w ω ∂w $\frac{1}{n-1}$ $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ $\frac{\partial}{\partial w} \frac{1}{2} w^T w - \frac{\partial}{\partial w} \sum_{n=1}^n \lambda_n (t_n (w^T x_n + w_0) - 1) =$ *n* $\int_a^T w - \frac{U}{2\pi} \sum_a \lambda_n (t_n (w^T x_n + w))$

Primal problem

Dual

problem

- 2) Complementary slackness condition $\lambda_n(t_n(\mathbf{w}^{\mathrm{T}} x_n + w_0) - 1) = 0$
- 3) Duality feasibility condition

$$
\min_{\mathbf{w}} \max_{\lambda} \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{n=1}^n \lambda_n (t_n (\mathbf{w}^T x_n + w_0) - 1)
$$

s.t. $\lambda_n \ge 0$

- We would like to convert again the optimization problem above into another form, which provides same results.
	- Because we want to solve the optimization problem in term of "lagrange multiplier (λ_n) ".

$$
\max_{\lambda} \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{n=1}^n \lambda_n (t_n(\mathbf{w}^T x_n + w_0) - 1)
$$

s.t. $\lambda_n \ge 0$

$$
\max_{\lambda} \min_{w, w_0} L(w, w_0, \lambda) = \frac{1}{2} w^{T} w - \sum_{n=1}^{N} \lambda_n (t_n (w^{T} x_n + w_0) - 1)
$$

$$
\frac{\partial L}{\partial w} = \mathbf{w} - \sum_{n=1}^{N} \lambda_n t_n x_n = 0
$$

- \triangle The first one is called stationarity condition.
	- \triangleright when we partial differentiate the problem with respect to its parameter "w", each of them should be zero.

$$
\max_{\lambda} \min_{w, w_0} L(w, w_0, \lambda) = \frac{1}{2} w^{T} w - \sum_{n=1}^{N} \lambda_n (t_n (w^{T} x_n + w_0) - 1)
$$

 \clubsuit The first one is called stationarity condition.

 \triangleright Again, this time in terms of "w₀"

$$
\max_{\lambda} \min_{w,w_0} L(w, w_0, \lambda) = \frac{1}{2} w^{\mathrm{T}} w - \sum_{n=1}^{N} \lambda_n (t_n (w^{\mathrm{T}} x_n + w_0) - 1)
$$

$$
w = \sum_{n=1}^{N} \lambda_n t_n x_n
$$

$$
L(\lambda) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m x_n^{\mathrm{T}} x_m - \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m x_n^{\mathrm{T}} x_m - \sum_{n=1}^{N} \lambda_n t_n w_0 + \sum_{n=1}^{N} \lambda_n
$$

$$
\max_{\lambda} L(\lambda) = \sum_{n=1}^{N} \lambda_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m \mathbf{x}_n^T \mathbf{x}_m
$$

s.t. $\lambda_n \ge 0$, $\sum_{n=1}^{N} \lambda_n t_n = 0$

- \Box Let's change it to a quadratic programming again.
- \Box As mentioned previously, a quadratic programming problem needs to be minimized

$$
\max_{\lambda} L(\lambda) = \sum_{n=1}^{N} \lambda_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m X_n^T X_m
$$

s.t. $\lambda_n \ge 0$, $\sum_{n=1}^{N} \lambda_n t_n = 0$

$$
\min_{\lambda} L(\lambda) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m X_n^T X_m - \sum_{n=1}^{N} \lambda_n
$$

s.t. $\lambda_n \ge 0$, $\sum_{n=1}^{N} \lambda_n t_n = 0$

 \Box Again, the optimization problem becomes a quadratic programming problem.

Let's summarize

$$
\min_{\lambda} L(\lambda) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m \mathbf{x}_n^T \mathbf{x}_m - \sum_{n=1}^{N} \lambda_n
$$

s.t. $\lambda \ge 0$, $t^T \lambda = 0$

 \Box The solution from the quadratic programming is "lagrange multipliers"(λ_n) Many of the solutions (lagrange multipliers) are zero \Box Complementary slackness (one of KKT conditions) should be satisfied.

 $\left[\lambda_n(t_n(w^{\mathrm{T}} x_n + w_0) - 1) = 0\right]$

 \Box In other words, if λ_n are not zero, $(t_n(w_t x_n + w_0) - 1)$ should be zero where corresponding data points should be support vectors.

Let's summarize

$$
\min_{\lambda} L(\lambda) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m \mathbf{x}_n^T \mathbf{x}_m - \sum_{n=1}^{N} \lambda_n
$$

s.t. $\lambda \ge 0$, $t^T \lambda = 0$

- \Box The solution from the quadratic programming is "lagrange multipliers"(λ_n) Many of the solutions (lagrange multipliers) are zero
- Complementary slackness (one of KKT conditions) should be satisfied.

 $\left[\lambda_n(t_n(w^{\mathrm{T}} x_n + w_0) - 1) = 0\right]$

 \Box In other words, if λ_n are not zero, $(t_n(w_t x_n + w_0) - 1)$ should be zero where corresponding data points should be support vectors. \Box With the non-zero λ_n , w and w_0 can be calculated using $t_n(w_t x_n+w_0)=1$

43
$$
w^{T}x + w_{0} = -1
$$

$$
wy^{T}x + w_{0} = -1
$$

$$
copyright @ 2022 **OSAKA University**. All right reserved.
$$

Let's summarize

$$
\min_{\lambda} L(\lambda) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m \mathbf{x}_n^T \mathbf{x}_m - \sum_{n=1}^{N} \lambda_n
$$
\nWe obtained previously

\n
$$
\text{S.t.} \quad \lambda \geq 0, \quad t^T \lambda = 0
$$
\n
$$
\text{or} \quad \mathbf{L}(\mathbf{W}_t \mathbf{x}_n + \mathbf{W}_0) = 1
$$
\n
$$
\text{or} \quad \mathbf{L}(\mathbf{W}_t \mathbf{x}_n + \mathbf{W}_0) = 1
$$
\n
$$
\text{or} \quad \mathbf{L}(\mathbf{W}_t \mathbf{x}_n + \mathbf{W}_0) = 1
$$

The solution from the quadratic programming is "lagrange multipliers" (λ_n) Many of the solutions (lagrange multipliers) are zero Complementary slackness (one of KKT conditions) should be satisfied.

 $\left[\lambda_n(t_n(w^{\mathrm{T}} x_n + w_0) - 1) = 0\right]$

 \Box In other words, if λ_n are not zero, $(t_n(w_t x_n + w_0) - 1)$ should be zero where corresponding data points should be support vectors. \Box With the non-zero χ_n , w and w_0 can be calculated using $t_n(w_t x_n+w_0)=1$

44
$$
\mathbf{w} = \sum_{n=1}^{N} \lambda_n t_n \mathbf{x}_n \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \mathbf{w}_0 = t_n - \sum_{n=1}^{N} \lambda_n t_n \mathbf{x}_n \mathbf{x}_n \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
$$
 Copyright © 2022 **OSAKA University**. All right reserved.

 \Rightarrow $w_0 = t_n - w_t x_n$

N

1

 $w_0 = t_n - \sum_{n=1}^{\infty} \lambda_n t_n x_n$

 $\alpha_0 = t_n - \sum \lambda_n$

 $n^{\mathcal{N}}n$

Proof ends

Kernel trick

 \Box If data x_n are not linearly separable, what should we do?

 \mathcal{X}_{2} $\phi(x) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{pmatrix}$ $(0,0,1)$ $(1,1)$ $(0,1)$ $(1,1,1)$ $(0,0,0)$ $(1,0,0)$ $\phi(\mathbf{x})$ \mathcal{X}_1 Z_3 $X \rightarrow Z$ $(0, 0)$ $(1,0)$ Space Z Space X

 Z_1

Kernel trick

 \Box The idea of Kernel trick begins from here: to find the scalar values (the inner product of two vectors: z_n and z_m) and so we can formulate the quadratic problem which can be linearly separable.

Kernel trick: Kernel function

 \Box Kernel function K() is a function which returns the scalar values (the inner product of two vectors: z_n and z_m in Z space) when the data points $(x_n$ and x_m in X space) are given.

$$
K(\mathbf{x}_n^T, \mathbf{x}_m) = \mathbf{z}_n^T \mathbf{z}_m
$$

Kernel trick: Kernel function

 \Box With the Kernel function defined previously, we want to change the quadratic problem as follows:

- Because the Kernel function is a function of data points $(x_n$ and x_m) which we already have.

$$
\min_{\lambda} L(\lambda) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \lambda_n \qquad \text{min}_{\lambda} L(\lambda) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m \mathbf{K}(\mathbf{x}_n^T \mathbf{x}_m) - \sum_{n=1}^{N} \lambda_n
$$
\n
$$
s.t. \quad \lambda \ge 0, \qquad t^T \lambda = 0 \qquad \qquad s.t. \quad \lambda \ge 0, \qquad t^T \lambda = 0
$$

Kernel trick: Kernel function

 \Box With the Kernel function defined previously, we want to change the quadratic problem as follows:

- Because the Kernel function is a function of data points $(x_n$ and x_m) which we already have.

$$
\min_{\lambda} L(\lambda) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \lambda_n \qquad \text{min}_{\lambda} L(\lambda) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m \mathbf{K}(\mathbf{x}_n^T \mathbf{x}_m) - \sum_{n=1}^{N} \lambda_n
$$
\n
$$
s.t. \quad \lambda \ge 0, \qquad t^T \lambda = 0 \qquad \qquad s.t. \quad \lambda \ge 0, \qquad t^T \lambda = 0
$$

$$
\min_{\lambda} L(\lambda) = \frac{1}{2} \lambda^{T} \begin{bmatrix} t_{1}t_{1}K(\mathbf{x}_{1}, \mathbf{x}_{1}) & t_{1}t_{2}K(\mathbf{x}_{1}^{T}, \mathbf{x}_{2}) & \cdots & t_{1}t_{N}K(\mathbf{x}_{1}^{T}, \mathbf{x}_{N}) \\ t_{2}t_{1}K(\mathbf{x}_{2}, \mathbf{x}_{1}) & t_{2}t_{2}K(\mathbf{x}_{2}^{T}, \mathbf{x}_{2}) & \cdots & t_{2}t_{N}K(\mathbf{x}_{2}^{T}, \mathbf{x}_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ t_{N}t_{1}K(\mathbf{x}_{N}\mathbf{x}_{1}) & t_{N}t_{2}K(\mathbf{x}_{N}^{T}, \mathbf{x}_{2}) & \cdots & t_{N}t_{N}K(\mathbf{x}_{N}^{T}, \mathbf{x}_{N}) \end{bmatrix} \lambda + (-1^{T})\lambda
$$

Polynomial kernel of degree 2

$$
K(\mathbf{x}, y) = (\mathbf{xy})^2
$$

= $((x_1, x_2) \cdot (y_1, y_2))^2$
= $(x_1y_1 + x_2y_2)^2$
= $x_1^2y_1^2 + 2x_1x_2y_1y_2 + x_2^2y_2^2$

Polynomial kernel of degree 2

$$
= ((x1, x2) \cdot (y1, y2))2
$$

= $(x1y1 + x2y2)2$
= $(x1y1 + x2y2)2$
= $x12y12 + 2x1x2y1y2 + x22y22$

$$
= x_1^2 y_1^2 + 2x_1 x_2 y_1 y_2 + x_2^2 y_2^2
$$

Gaussian Kernel: derivation (inner product in the infinite z space)

$$
K(\mathbf{x}_n, \mathbf{x}_m) = \exp(-\alpha ||\mathbf{x}_n - \mathbf{x}_m||^2)
$$

\n
$$
= \exp(-\alpha \mathbf{x}_n^2) \exp(-\alpha \mathbf{x}_m^2) \exp(2\alpha \mathbf{x}_n \mathbf{x}_m)
$$

\n
$$
= \exp(-\alpha \mathbf{x}_n^2) \exp(-\alpha \mathbf{x}_m^2) \sum_{k=0}^{\infty} \frac{(2\alpha)^k (\mathbf{x}_n)^k (\mathbf{x}_m)^k}{k!}
$$

\n
$$
= \sum_{k=0}^{\infty} \sqrt{\frac{(2\alpha)^k}{k!}} \exp(-\alpha \mathbf{x}_n^2) (\mathbf{x}_n)^k \sqrt{\frac{(2\alpha)^k}{k!}} \exp(-\alpha \mathbf{x}_m^2) (\mathbf{x}_m)^k
$$

Mapping to infinite-dimension !

 $= \phi(\mathbf{x}_n) \phi(\mathbf{x}_m)$

Gaussian Kernel: parameter alpha

54 http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex8/ex8.html copyright © 2022 **OSAKA University**. All right reserved.

- PCA and SVM are probably the most representative conventional machine learning algorithms.
- \Box PCA helps you to manipulate a set of data in a way that
	- determining which features are important,
	- reducing its dimension, so that the data can be processed or visualized more efficiently.
- SVM is a classification method founded on well defined mathematical framework, which can handle linear or nonlinear classification problems.