Perceptron algorithm (with Python)

Tutorial 2 Yang
The perceptron algorithm is an example of a linear discriminant model (two-class model).

How to implement the Perceptron algorithm with Python?
Tutorial 2

Through this tutorial, you will know:

- How to load training and testing data from files
- How to import the packages
- How to train the model by the training data
- How to make predictions with the testing data
- How to plot the figures illustrated the algorithm
- How to tune the parameters in the models
Homegrown libraries and third-party application:

- For scientific computing: >>> import somelibrary
 - Numpy: provide high-performance vector, matrix and higher-dimensional data structures for Python
 - SciPy: based on the low-level Numpy framework and provides a large number of higher-level scientific algorithms
 - matplotlib: an excellent 2D and 3D graphics library for generating scientific figures
 - Pandas: a python package providing fast, flexible and expressive data structures for easy and intuitive data analysis and data manipulation
 - scikit-learn: a open-source machine learning library, simple and efficient tools for data mining and data analysis
Algorithm PerceptronTrain(linearly separable set R)

1. $w \leftarrow w^{(0)}; b \leftarrow b^{(0)}; MaxIter = 100$
 #Initialize weight, bias and iteration number
2. for t in range of 0 to MaxIter do
3. choose each $(x, y) \in R$
4. $a \leftarrow w^T \times x + b$
5. if $y \neq \text{sign}(a)$ then
6. $w^{(t+1)} \leftarrow w^{(t)} + \eta \times y \times x^t$
7. $b^{(t+1)} \leftarrow b^{(t)} + \eta \times y$
8. else
9. $w^{(t+1)} \leftarrow w^{(t)}$ $b^{(t+1)} \leftarrow b^{(t)}$
10. end if
11. end for
12. return w, b

Algorithm PerceptronPredict(w, b, \hat{x})

1. $a \leftarrow w^T \times \hat{x} + b$
 #compute activation for testing data
2. return $\text{sign}(a)$
Example

- **Assessing credit card application**

<table>
<thead>
<tr>
<th>Age</th>
<th>23 years old</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual salary</td>
<td>NTD 1,000,000</td>
</tr>
<tr>
<td>Year in job</td>
<td>0.5 year</td>
</tr>
<tr>
<td>Current debt</td>
<td>200,000</td>
</tr>
</tbody>
</table>

Result:

- Approved, 1
- Rejected, -1

Abstract the feature vector

Training data:

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>2.6</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>2.2</td>
<td>1.4</td>
<td>-1</td>
</tr>
<tr>
<td>2.1</td>
<td>2.8</td>
<td>1</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>

Testing data:

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>2.6</td>
<td>(?)</td>
</tr>
<tr>
<td>1.3</td>
<td>2</td>
<td>(?)</td>
</tr>
<tr>
<td>2.2</td>
<td>1.4</td>
<td>(?)</td>
</tr>
<tr>
<td>2.1</td>
<td>2.8</td>
<td>(?)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>
Example

As \(w_0 = b, \ x_0 = 1, \) initialization \(W=[1,1], \ b=1, \) and \(\text{eta}=0.1 \)
\(W' = [b, 1,1], \ x = [1, x_1, x_2], \)

1. \(a = W^T * x = 1 + 0.8 + 2.6 = 4.4 > 0, \)
 \(f(a) = 1 \) is the same with \(y = 1, \)
 return \(W \) and \(b \)

2. \(a = W^T * x = 1 + 2.2 + 1.4 = 4.6 > 0, \)
 \(f(a) = 1 \) is different with \(y = -1, \)

update \(W \) and \(b: \)
\(W = [1,1] + \text{eta} * y * [2.2,1.4] = [0.78,0.86] \)
\(b = b + \text{eta} * y = 1 + 0.1 * (-1) = 0.9 \)

......
Repeat until \(\text{MaxIter} \) times

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>2.6</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>2.2</td>
<td>1.4</td>
<td>-1</td>
</tr>
<tr>
<td>2.1</td>
<td>2.8</td>
<td>1</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

If \(\text{eta}=1, \ W=[1.2,0.4], \ b=0 \)
Import modules and packages

```python
import os
import numpy as np
import pandas as pd
from sklearn.linear_model import Perceptron
import matplotlib.pyplot as plt
```
Load the data into pandas

```python
# get the path of current directory
path=os.getcwd()

# load data
traindata=pd.read_csv(path+'\traindata.csv')  # Loading data from CSV into pandas
train_x=traindata.iloc[:,:-1]
train_y=traindata.iloc[:,1]

testdata=pd.read_csv(path+r'\testdata.csv')
test_x=testdata.iloc[:,1]
test_y=testdata.iloc[:,1]
```

- Position based selection:
 - except last column
 - Select only the last column
introduce the perceptron
MaxIter=20
per=Perceptron(max_iter=MaxIter, eta0=0.1, shuffle=True)
per.fit(train_x, train_y)
Test_y=pd.Series(per.predict(test_x), name='y')
testdata=test_x.join(Test_y, how='outer')

#write the predict results to file
testdata.to_csv(path+r'\test.csv', index=False)
Parameters of Perceptron

class sklearn.linear_model.Perceptron (penalty=None, alpha=0.0001, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0, eta0=1.0, n_jobs=1, random_state=0, class_weight=None, warm_start=False, n_iter=None)

Parameters:

Penalty: The penalty (aka regularization term) to be used. Defaults='None'

shuffle: Whether or not the training data should be shuffled after each epoch, default= ‘True’

eta0: Constant by which the updates are multiplied, default=1

max_iter: The maximum number of passes over the training data. It only impacts the behavior in the fit method, and not the partial_fit. Default=5, or 1000(from v0.21)

n_iter: The number of passes over the training data. Default=None. Deprecated from v0.19 will be removed in v0.21)

Attributes:

coef_: array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]; Weights assigned to the features.

intercept_: array, shape = [1] if n_classes == 2 else [n_classes];Constants in decision function.

n_iter_: int; The actual number of iterations to reach the stopping criterion. For multiclass fits, it is the maximum over every binary fit.

Plot the training and test data

plot the train data set
label=train_y.copy()
label[label<0]=0 # set the label to (0,1)
label=label.astype(int)
label=label.values
colormap=np.array(['r','b'])
plt.scatter(train_x.iloc[:,0], train_x.iloc[:,1], marker='o', c=colormap[label])

plot the test data set
labelt=Test_y.copy()
labelt[labelt<0]=0
labelt=labelt.astype(int)
labelt=labelt.values
plt.scatter(test_x.iloc[:,0], test_x.iloc[:,1], marker='+', c=colormap[labelt])
#calculate the hyperplane
w=per.coef_[0]
xx=np.linspace(0, 4)
yy=-(w[0]*xx+per.intercept_[0])/w[1]

#plot the line
plt.plot(xx, yy, 'k-', label='$hyperplane$')
plt.title(u'Iteration = %d' % MaxIter)
plt.legend()

plt.savefig(path+'¥¥perceptron.png')
plt.show()
calculate the accuracy rate for inseparable data sets

```python
count = 0
for i in range(len(Test_y)):
    if test_y.iloc[i] == Test_y.iloc[i]:
        count += 1.0

accuracy = count / float(len(Test_y)) * 100
print('Accuracy rate: %.2f%%' % accuracy)
```
Example result

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>2.6</td>
<td>-1</td>
</tr>
<tr>
<td>0.6</td>
<td>2.4</td>
<td>-1</td>
</tr>
<tr>
<td>1.3</td>
<td>1.6</td>
<td>1</td>
</tr>
<tr>
<td>1.7</td>
<td>2.0</td>
<td>1</td>
</tr>
<tr>
<td>2.3</td>
<td>2.1</td>
<td>1</td>
</tr>
<tr>
<td>2.2</td>
<td>3.2</td>
<td>-1</td>
</tr>
<tr>
<td>1.8</td>
<td>2.8</td>
<td>-1</td>
</tr>
<tr>
<td>3.0</td>
<td>3.2</td>
<td>-1</td>
</tr>
</tbody>
</table>
Exercise 1: Simple Perceptron classifier and plot the results

- Copy the files of training data and testing data and store in specified folder in your laptop
- Open a CMD window, change the directory path to the one stored the files - `cd directory path`
- Run the jupyter notebook - `jupyter notebook`
- Copy the codes and paste in the jupyter file
- Plot the training data and testing data
- Plot the hyperplane
Exercise 2: Observe the behaviours of Perceptron for shuffle

Create 8 subplots (2*4)
- max iteration is set from 6 to 20 every 2 steps
- Plot the training data
- Plot the hyperplane

Create 8 subplots (2*4)
- shuffle is set to False
- max iteration is set from 6 to 20 every 2 steps
- Plot the training data
- Plot the hyperplane
Exercise 3: Comparing the behaviours for eta0

- Create 8 subplots (2*4)
 - eta0 is set to different value
 - max iteration is set from 6 to 20 every 2 steps
 - Plot the training data
 - Plot the hyperplane
 - print(w)
Exercise 4: Train the data by SGDClassifier

- Create 8 subplots (2*4)
 - Use the SGDClassifier function for classification
 - eta0 is set to 1
 - max iteration is set from 6 to 20 every 2 steps
 - Plot the training data
 - Plot the hyperplane
 - Comparing the behaviours for shuffle and eta0 to perceptron function
Exercise 5: How to select model by Accuracy rate

- Load the data from datafile.csv
- Partitioning it into S parts: $S - 1$ is training data, remaining for testing
- Calculate the accuracy rate and repeat for all S possible choices
- Change the function from perceptron to SGDClassifier
- Tune the parameter for the model and observe

$S = 4,$ Repeat for 4 runs